Exclusive:Discipline integration and design innovation

Development and prospect of artificial olfaction technology

  • LU Qi ,
  • YANG Jiawei ,
  • ZHANG Yu ,
  • XU Yingqing
Expand
  • 1. The Future Laboratory, Tsinghua University, Beijing 100084, China
    2. Academy of Arts & Design, Tsinghua University, Beijing 100084, Chin

Received date: 2021-11-27

  Revised date: 2022-08-07

  Online published: 2023-05-22

Abstract

As a kind of chemical information, odor is ubiquitous in life. Therefore, the research of artificial olfaction technology has far-reaching strategic significance and wide application scope. This paper firstly introduces the concept and definition of artificial olfactory perception technology, and compares the development of artificial olfactory technology of bionic type and chemical analysis type with related researches; meanwhile, the research work of Olfactory Computing Group in artificial olfaction and olfactory computing is used as a case study to further elaborate the development trend from artificial olfactory technology to olfactory computing technology in this field. In addition, this paper illustrates the current technical challenges and possible solution paths of olfactory computing research, as well as the prospect of landing applications of olfactory computing in smart home, smart agriculture, medical health and other industries. The huge potential value of odor information in real environment has not been fully explored, so the research of artificial olfaction technology for different application scenarios may become an important research topic in the future.

Cite this article

LU Qi , YANG Jiawei , ZHANG Yu , XU Yingqing . Development and prospect of artificial olfaction technology[J]. Science & Technology Review, 2023 , 41(8) : 26 -35 . DOI: 10.3981/j.issn.1000-7857.2023.08.003

References

[1] 陈炜, 陈科璞, 周斌, 等 . 嗅觉与感觉信息整合[J]. 科技导报, 2017, 35(19): 29-36.
[2] Wang P Y, Sun Y, Axel R, et al. Evolving the olfactory system with machine learning[J]. Neuron, 2021, 109(23): 3879-3892.
[3] Burlachenko J, Kruglenko I, Snopok B, et al. Sample handling for electronic nose technology: State of the art and future trends[J]. Trends in Analytical Chemistry, 2016, 82: 222-236.
[4] Persaud K, Dodd G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose[J]. Nature, 1982, 299(5881): 352-355.
[5] Alam H, Saeed S H. Modern applications of electronic nose: A review[J]. International Journal of Electrical & Computer Engineering, 2013, 3(1): 52-63
[6] Cave J W, Kenneth J, Mitropoulos A N. Progress in the development of olfactory-based bioelectronic chemosensors[J]. Biosensors and Bioelectronics, 2019, 123: 211-222.
[7] Bernabei M, Pantalei S, Persaud K C. Large-scale chemical sensor arrays for machine olfaction[J]. Essentials of Machine Olfaction and Taste, 2016(1): 49-85.
[8] Ban C, Min X, Xu J, et al. An artificial olfactory memory system for monitoring and recording of volatile organic compounds[J]. Advanced Materials Technologies, 2021, 6(11): 2100366.
[9] Gao Z, Chen S, Li R, et al. An artificial olfactory system with sensing, memory and self-protection capabilities[J]. Nano Energy, 2021, 86: 106078.
[10] Misawa N, Fujii S, Kamiya K, et al. Construction of a biohybrid odorant sensor using biological olfactory receptors embedded into bilayer lipid membrane on a chip[J]. ACS sensors, 2019, 4(3): 711-716.
[11] Sun F, Lu Q, Feng S, et al. Flexible artificial sensory systems based on neuromorphic devices[J]. ACS Nano, 2021, 15(3): 3875-3899.
[12] Wyszynski B, Nakamoto T. Linking biological and artificial olfaction: Biomimetic quartz crystal microbalance odor sensors[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2009, 4(3):334-338.
[13] 骆德汉 . 仿生嗅觉原理, 系统及应用[M]. 北京: 科学出版社, 2012.
[14] de Vito S, Fattoruso G, Pardo M, et al. Semi-supervised learning techniques in artificial olfaction: A novel approach to classification problems and drift counteraction[J]. IEEE Sensors Journal, 2012, 12(11): 3215-3224.
[15] Liu Q, Li X, Ye M, et al. Drift compensation for electronic nose by semi-supervised domain adaption[J]. IEEE Sensors Journal, 2013, 14(3): 657-665.
[16] Martinez D, Burgués J, Marco S. Fast measurements with MOX sensors: A least-squares approach to blind deconvolution[J]. Sensors, 2019, 19(18): 4029.
[17] Lammers A, Neerincx A H, Vijverberg S J H, et al. The impact of short-term exposure to air pollution on the exhaled breath of healthy adults[J]. Sensors, 2021, 21(7): 2518.
[18] Hayasaka T, Lin A, Copa V C, et al. An electronic nose using a single graphene FET and machine learning for water, methanol, and ethanol[J]. Microsystems & Nanoengineering, 2020, 6(1): 1-13.
[19] Heracles Neo, flash gas chromatography electronic nose[EB/OL]. (2021-01-01) [2021-10-07]. https://www. alpha-mos.com/heracles-smell-analysis.
[20] Analytics GmbH. products[EB/OL]. (2021-01-01)[2021-10-07]. https://airsense.com/en/products.
[21] Mining biological intelligence for actionable insights[EB/OL]. (2021-01-01)[2021-10-07]. https://aromyx.com.
[22] About us[EB/OL]. (2021-01-01) [2021-10-07]. https://aryballe.com/.
[23] Son M, Park T H. The bioelectronic nose and tongue using olfactory and taste receptors: Analytical tools for food quality and safety assessment[J]. Biotechnology advances, 2018, 36(2): 371-379.
[24] Jung Y H, Park B, Kim J U, et al. Bioinspired electronics for artificial sensory systems[J]. Advanced Materials, 2019, 31(34): 1803637.
[25] Kazzy E M, Weerakkody J S, Hurot C, et al. An overview of artificial olfaction systems with a focus on surface plasmon resonance for the analysis of volatile organic compounds[J]. Biosensors, 2021, 11(8): 244.
[26] Wang Z, Yi S, Chen A, et al. Single-shot on-chip spectral sensors based on photonic crystal slabs[J]. Nature Communications, 2019, doi:10.1038/s41467-019-0899 4-5.
[27] Yang Z Y, Albrow-Owen T, Cui H X, et al. Single-nanowire spectrometers[J]. Science, 2019, 365(6457): 6064-6069.
[28] 周浩林 . 小型化质谱设计的探究[J]. 仪表技术, 2014(4): 6.
[29] Jiang T, Zhang H, Tang Y, et al. A "brick mass spectrometer" driven by a sinusoidal frequency scanning technique[J]. Analytical Chemistry, 2017, 89(10): 5578.
[30] Zhang W, Chiang S, Li Z, et al. A polymer coating transfer enrichment method for direct mass spectrometry analysis of lipids in biofluid samples[J]. Angewandte Chemie International Edition, 2019, 58(18): 6064-6069.
[31] Terry S C, Jerman J H, Angell J B. A gas chromatographic air analyzer fabricated on a silicon wafer[J]. IEEE Transactions on Electron Devices, 1979, 26(12): 1880-1886.
[32] Narayanan S, Agah M. Fabrication and characterization of a suspended TCD integrated with a gas separation column[J]. Journal of Microelectromechanical Systems, 2013, 22(5): 1166-1173.
[33] Bo-Wen T, Fei F, Bin Z, et al. Study of monolithic integrated micro gas chromatography chip[J]. Chinese Journal of Analytical Chemistry, 2018, 46(9): 1363-1371.
[34] 路奇, 吴昊, 梁婉, 等 . 基于气味采集的嗅觉输入界面探索[J]. 计算机辅助设计与图形学学报, 2020, 32(7): 1018-1025.
[35] 黄立, 张静怡, 吴昊, 等 . 针对气味数据的交互式聚类可视分析框架[J]. 计算机辅助设计与图形学学报, 2020, 32(7): 1026-1041.
[36] Wyszynski B, Yatabe R, Nakao A, et al. Array of chemosensitive resistors with composites of gas chromatography (GC) materials and carbon black for detection and recognition of VOCs: A basic study[J]. Sensors, 2017, 17(7): 1606.
[37] Rebordão G, Palma S I C J, Roque A C A. Microfluidics in gas sensing and artificial olfaction[J]. Sensors, 2020, 20(20): 5742.
[38] Wang Y, Yao Q, Kwok J T, et al. Generalizing from a few examples: A survey on few-shot learning[J]. ACM Computing Surveys (CSUR). 2020, 53(3): 1-34.
[39] Röck F, Barsan N, Weimar U. Electronic nose: Current status and future trends[J]. Chemical Reviews, 2008, 108(2): 705-725.
[40] Tran N, Kepple D, Shuvaev S, et al. DeepNose: Using artificial neural networks to represent the space of odorants[C]//International Conference on Machine Learning. New York: PMLR, 2019: 6305-6314.
[41] Hu W, Wan L, Jian Y, Ren C, et al. Electronic noses: From advanced materials to sensors aided with data processing[J]. Advanced Materials Technologies. 2019, 4(2): 1800488.
[42] Chen Z, Chen Z, Song Z, et al. Smart gas sensor arrays powered by artificial intelligence[J]. Journal of Semiconductors, 2019, 40(11): 111601.
[43] Imam N, Cleland T A. Rapid online learning and robust recall in a neuromorphic olfactory circuit[J]. Nature Machine Intelligence. 2020, 2(3): 181-91.
[44] Ozer E, Kufel J, Myers J, et al. A hardwired machine learning processing engine fabricated with submicron metal-oxide thin-film transistors on a flexible substrate[J]. Nature Electronics. 2020, 3(7): 419-25.
[45] Landhuis E. Seven technologies to watch in 2021[EB/OL]. (2021-03-11) [2021-10-06]. http://www. nature. com/articles/d41586-021-00191-z#ref-CR15.
[46] Reprise de souffle face à la COVID-19[EB/OL]. (2021-03-30) [2021-10-06]. https://www. cnrs. fr/fr/reprise-de-souffle-face-la-covid-19.
Outlines

/