Exclusive: Aeronautical composite technology

Research progress on fatigue and creep of SiC/SiC composites

  • ZHAO Chunling ,
  • YANG Jinhua ,
  • LI Wei ,
  • CHEN Zhilai ,
  • ZHANG Xin ,
  • YUAN Shifeng ,
  • LI Pu ,
  • JIAO Jian
Expand
  • 1. Research Institute of Aero-Engine, Beihang University, Beijing 100191, China
    2. AECC Hunan Aviation Power Plant Research Institute, Zhuzhou 412002, China
    3. Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China

Received date: 2023-02-16

  Revised date: 2023-04-19

  Online published: 2023-06-01

Abstract

With the increasing demand for long-term oxidation resistance and reusable high-temperature materials in aerospace, SiC/SiC composites are becoming a research hotspot. This paper summarizes the progress in fatigue and creep properties of SiC/SiC composites in recent years, comprehensively analyzes the effects of temperature, load, frequency and gas environment on fatigue properties, as well as the effects of fiber type, temperature and load, frequency and matrix type on creep properties.

Cite this article

ZHAO Chunling , YANG Jinhua , LI Wei , CHEN Zhilai , ZHANG Xin , YUAN Shifeng , LI Pu , JIAO Jian . Research progress on fatigue and creep of SiC/SiC composites[J]. Science & Technology Review, 2023 , 41(9) : 27 -35 . DOI: 10.3981/j.issn.1000-7857.2023.09.003

References

[1] Corman G, Upadhyay R, Sinha S, et al. General electric company: Selected applications of ceramics and composite materials[M]//Materials Research for Manufacturing. Cham Switzerland: Springer International Publishing, 2016, 224: 59-91.
[2] Chen M, Qiu H, Xie W, et al. Research progress of continuous fiber reinforced ceramic matrix composite in hot section components of aero engine[J]. IOP Conference Series: Materials Science and Engineering, 2019, 678: 012043.
[3] Bansal N P. Handbook of ceramic composites[M]. Boston: Kluwer Academic Publishers, 2005: 55-172.
[4] ISO 17142—2014 Fine ceramics (advanced ceramics, advanced technical ceramics) -Mechanical properties of ceramic composites at high temperature in air at atmospheric pressure-Determination of fatigue properties at constant amplitude[S]. Geneva: The British Standards Institution, 2014: 1-15.
[5] ASTM C1360—2017 Standard practice for constant-amplitude, axial, tension-tension cyclic fatigue of continuous fiber-reinforced advanced ceramics at ambient temperatures[S]. West Conshohocken, PA: ASTM International, 2017: 1-9.
[6] ASTM C1337—2017 Standard test method for creep and creep rupture of continuous fiber-reinforced advanced ceramics under tensile loading at elevated temperature[S]. West Conshohocken, PA: ASTM International, 2017: 1-11.
[7] ISO 19604—2018 Fine ceramics (advanced ceramics, advanced technical ceramics) -Mechanical properties of ceramic composites at high temperature-Determination of stress-rupture time diagram under constant tensile loading[S]. Geneva: The British Standards Institution, 2018: 1-18.
[8] Luo H, Luo R Y, Wang L Y, et al. Effects of fabrication processes on the properties of SiC/SiC composites[J]. Ceramics International, 2021, 47(16): 22669-22676.
[9] Liu H, Li L, Yang J, et al. Characterization and modeling damage and fracture of prepreg-MI SiC/SiC composites under tensile loading at room temperature[J]. Applied Composite Materials, 2022, 29: 1167-1193.
[10] Carminati P, Jacques S, Rebillat F. Oxidation/corrosion of BN-based coatings as prospective interphases for SiC/SiC composites[J]. Journal of the European Ceramic Society, 2021, 41(5): 3120-3131.
[11] Bumgardner C H, Heim F M, Roache D C, et al. Analysis of SiC/SiC composites for energy applications at ambient conditions[J]. Journal of the American Ceramic Society, 2021, 104(1): 481-491.
[12] Dai J, Wang Y, Xu Z, et al. Effect of BN/SiC interfacial coatings on the tensile properties of SiC/SiC minicomposites fabricated by PIP[J]. Ceramics International, 2020, 46(16): 25058-25065.
[13] 焦健, 邱海鹏, 王宇, 等 . 不同界面层体系对 SiCf/SiC复合材料性能影响的研究[C]//第17届全国复合材料学术会议. 北京: 中国航空学会, 2012: 881-885.
[14] 杨金华, 吕晓旭, 焦健. 碳化硅陶瓷基复合材料界面层技术研究进展[J]. 航空制造技术, 2018, 61(11): 79-87.
[15] Zhang D, Liu Y, Liu H, et al. Characterisation of damage evolution in plain weave SiC/SiC composites using in situ X-ray micro-computed tomography[J]. Composite Structures, 2021, 275: 114447.
[16] 赵文青, 齐哲, 吕晓旭, 等. 界面层对CVI-mini SiCf/SiC复合材料力学性能的影响[J]. 材料工程, 2021, 49(7): 71-77.
[17] 陈明伟, 罗文东, 邱海鹏, 等 . 界面层对近化学计量比碳化硅纤维增强碳化硅复合材料性能的影响[J]. 稀有金属材料与工程, 2022, 51(2): 645-650.
[18] 周长城, 周新贵, 张长瑞, 等 . 制备工艺对碳纤维增强碳化硅基复合材料结构和力学性能的影响[J]. 稀有金属, 2005, 29(5): 666-669.
[19] 张冰玉, 王岭, 焦健, 等. 界面层对SiCf/SiC复合材料力学性能及氧化行为的影响[J]. 航空制造技术, 2017(12): 78-83.
[20] 于新民, 周万城, 郑文景, 等 . 碳界面层制备工艺对SiCf/SiC 材料力学性能的影响[J]. 稀有金属材料与工程, 2009, 38(增刊2): 462-465.
[21] 吕晓旭, 姜卓钰, 周怡然, 等. BN/SiC复合界面层对SiC纤维和 PIP-Mini 复合材料力学性能的影响[J]. 无机材料学报, 2020, 35(10): 1099-1104.
[22] Xu B, Chen D, Yang H, et al. Effect of strain rate on the tensile properties of mini-SiC/SiC composites[J]. Ceramics International, 2022, 48(2): 2092-2096.
[23] Fantozzi G, Reynaud P, Rouby D. Fatigue behaviour of structural ceramic composites[J]. Advances in Science and Technology, 2006, 45: 1664-1673.
[24] Dong H, Gao X, Zhang S, et al. Multi-scale modeling and experimental study of fatigue of plain-woven SiC/SiC composites[J]. Aerospace Science and Technology, 2021, 114: 106725.
[25] Zhang S, Gao X, Song Y, et al. Fatigue behavior and damage evolution of SiC/SiC composites under high-temperature anaerobic cyclic loading[J]. Ceramics International, 2021, 47(21): 29646-29652.
[26] Liu C, Shi D, Jing X, et al. Multiscale investigation on fatigue properties and damage of a 3D braided SiC/SiC + PyC/SiC composites in the full stress range at 1300℃ [J]. Journal of the European Ceramic Society, 2022, 42(4): 1208-1218.
[27] Zhu S, Mizuno M, Kagawa Y, et al. Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: A review[J]. Composites Science and Technology, 1999, 59(6): 833-851.
[28] Reynaud P, Rouby D, Fantozzi G. Cyclic fatigue behaviour at high temperature of self-healing ceramic matrix composite[J]. Annales De Chimie-Science Des Materiaux, 2005: 649-648.
[29] Ruggles-Wrenn M B, Kurtz G M. Notch Sensitivity of fatigue behavior of a Hi-Nicalon™/SiC-B4C composite at 1200℃ in air and in steam[J]. Applied Composite Materials, 2013, 20: 891-905.
[30] Ruggles-Wrenn M, Boucher N, Przybyla C. Fatigue of three advanced SiC/SiC ceramic matrix composites at 1200℃ in air and in steam[J]. International Journal of Applied Ceramic Technology, 2018, 15(1): 3-15.
[31] Ruggles-Wrenn M B, Lee M D. Fatigue behavior of an advanced SiC/SiC ceramic composite with a self-healing matrix at 1300℃ in air and in steam[J]. Materials Science and Engineering: A, 2016, 677: 438-445.
[32] Ojard G, Calomino A, Morscher G, et al. Post creep/dwell fatigue testing of MI SiC/SiC composites[J]. Mechanical Properties and Performance of Engineering Ceramics and Composites III, 2007: 135-143.
[33] Luo Z, Cao H, Ren H, et al. Tension-tension fatigue behavior of a PIP SiC/SiC composite at elevated temperature in air[J]. Ceramics International, 2016, 42(2): 3250-3260.
[34] Kim T T, Mall S, Zawada L P, et al. Simultaneous fatigue and combustion exposure of a SiC/SiC ceramic matrix composite[J]. Journal of Composite Materials, 2010, 44(25): 2991-3016.
[35] Ruggles-Wrenn M B, Christensen D T, Chamberlain A L, et al. Effect of frequency and environment on fatigue behavior of a CVI SiC/SiC ceramic matrix composite at 1200℃[J]. Composites Science and Technology, 2011, 71(2): 190-196.
[36] Mall S, LaRochelle K J. Fatigue and stress-rupture behaviors of SiC/SiC composite under humid environment at elevated temperature[J]. Composites Science and Technology, 2006, 66(15): 2925-2934.
[37] Shuler S F, Holmes J W, Wu X, et al. Influence of loading frequency on the room-temperature fatigue of a carbon-fiber/SiC-matrix composite[J]. Journal of the American Ceramic Society, 1993, 76(9): 2327-2336.
[38] Panakarajupally R P, Presby M J, Manigandan K, et al. Thermomechanical characterization of SiC/SiC ceramic matrix composites in a combustion facility[J]. Ceramics, 2019, 2(2): 407-425. 
[39] Sabelkin V, Mall S, Cook T S, et al. Fatigue and creep behaviors of a SiC/SiC composite under combustion and laboratory environments[J]. Journal of Composite Materials, 2015, 50(16): 2145-2153.
[40] Almansour A S, Morscher G N. Tensile creep behavior of SiCf/SiC ceramic matrix minicomposites[J]. Journal of the European Ceramic Society, 2020, 40(15): 5132-5146.
[41] Bodet R, Bourrat X, Lamon J, et al. Tensile creep behaviour of a silicon carbide-based fibre with a low oxygen content[J]. Journal of Materials Science, 1995, 30(3): 661-677.
[42] Jaskowiak M H, DiCarlo J A. Pressure effects on the thermal stability of silicon carbide fibers[J]. Journal of the American Ceramic Society, 1989, 72(2): 192-197.
[43] Clauß B. Fibers for ceramic matrix composites[J]. Ceramic Matrix Composites, 2008: 1-20.
[44] DiCarlo J A, Yun H M. Non-oxide (silicon carbide) fibers[M]//Handbook of ceramic composites. Boston: Kluwer Academic Publishers, 2005: 33-52.
[45] Dong S M, Chollon G, Labrugère C, et al. Characterization of nearly stoichiometric SiC ceramic fibres[J]. Journal of Materials Science, 2001, 36(10): 2371-2381.
[46] Sauder C, Lamon J. Tensile creep behavior of SiC-based fibers with a low oxygen content[J]. Journal of the American Ceramic Society, 2007, 90(4): 1146-1156.
[47] Jing X, Yang X, Shi D, et al. Tensile creep behavior of three-dimensional four-step braided SiC/SiC composite at elevated temperature[J]. Ceramics International, 2017, 43(9): 6721-6729.
[48] Jing X, Cheng Z, Niu H, et al. Deformation and rupture behaviors of SiC/SiC under creep, fatigue and dwell-fatigue load at 1300 ℃ [J]. Ceramics International, 2019, 45(17): 21440-21447.
[49] Wang X, Song Z, Cheng Z, et al. Tensile creep properties and damage mechanisms of 2D-SiCf/SiC composites reinforced with low-oxygen high-carbon type SiC fiber[J]. Journal of the European Ceramic Society, 2020, 40(14): 4872-4878.
[50] Wilshire B, Bache M R. Creep damage resistance of ceramic-matrix composites[J]. Journal of the European Ceramic Society, 2007, 27(16): 4603-4611.
[51] Zhu S, Kagawa Y. Evaluation of creep behavior in SiC/SiC ceramic matrix composites[J]. 生产研究, 2001, 53(9): 466-469.
[52] Morscher G N. Tensile creep and rupture of 2D-woven SiC/SiC composites for high temperature applications[J]. Journal of the European Ceramic Society, 2010, 30(11): 2209-2221.
[53] Lamon J. Review: Creep of fibre-reinforced ceramic matrix composites[J]. International Materials Reviews, 2020, 65(1): 28-62.
[54] Morscher G N, Pujar V V. Design guidelines for in-plane mechanical properties of SiC fiber-reinforced melt-infiltrated SiC composites[J]. International Journal of Applied Ceramic Technology, 2009, 6(2): 151-163.
[55] Carrère P, Lamon J. Creep behaviour of a SiC/Si-B-C composite with a self-healing multilayered matrix[J]. Journal of the European Ceramic Society, 2003, 23(7): 1105-1114.
[56] 王西, 王克杰, 柏辉, 等 . 化学气相渗透 2D-SiCf/SiC 复合材料的蠕变性能及损伤机理[J]. 无机材料学报, 2020, 35(7): 5.
[57] Luan X, Xu X, Wang L, et al. Self-healing enhancing tensile creep of 2D-satin weave SiC/(SiC-SiBCN)x composites in wet oxygen environment[J]. Journal of the European Ceramic Society, 2020, 40(10): 3509-3519.
[58] Collier V E, Xu W, McMeeking R M, et al. Recession of BN coatings in SiC/SiC composites through reaction with water vapor[J]. Journal of the American Ceramic Society, 2022, 105(1): 498-511.
[59] Yang L, Xiao X, Jing L, et al. Dynamic oxidation mechanism of SiC fiber reinforced SiC matrix composite in high-enthalpy plasmas[J]. Journal of the European Ceramic Society, 2021, 41(10): 5388-5393.
[60] Morscher G N, John R, Zawada L, et al. Creep in vacuum of woven Sylramic-iBN melt-infiltrated composites[J]. Composites Science and Technology, 2011, 71(1): 52-59.
[61] Zhu S, Mizuno M, Nagano Y, et al. Creep and fatigue behavior in an enhanced SiC/SiC composite at high temperature[J]. Journal of the American Ceramic Society, 1998, 81(9): 2269-2277.
[62] Zhu S, Mizuno M, Kagawa Y, et al. Creep and fatigue behavior in Hi-Nicalon-fiber-reinforced silicon carbide composites at high temperatures[J]. Journal of the American Ceramic Society, 1999, 82(1): 117-128.
[63] Wu X, Holmes J W. Tensile creep and creep-strain recovery behavior of silicon carbide fiber/calcium aluminosilicate matrix ceramic composites[J]. Journal of the American Ceramic Society, 1993, 76(10): 2695-2700.
[64] Bhatt R T, Kiser J D. Creep behavior and failure mechanisms of CVI and PIP SiC/SiC composites at temperatures to 1650℃ in air[J]. Journal of the European Ceramic Society, 2021, 41(13): 6196-6206.
[65] Morscher G N, Pujar V V. Creep and stress-strain behavior after creep for SiC fiber reinforced, melt-infiltrated SiC matrix composites[J]. Journal of the American Ceramic Society, 2006, 89(5): 1652-1658.
Outlines

/