[1] Corman G, Upadhyay R, Sinha S, et al. General electric company: Selected applications of ceramics and composite materials[M]//Materials Research for Manufacturing. Cham Switzerland: Springer International Publishing, 2016, 224: 59-91.
[2] Chen M, Qiu H, Xie W, et al. Research progress of continuous fiber reinforced ceramic matrix composite in hot section components of aero engine[J]. IOP Conference Series: Materials Science and Engineering, 2019, 678: 012043.
[3] Bansal N P. Handbook of ceramic composites[M]. Boston: Kluwer Academic Publishers, 2005: 55-172.
[4] ISO 17142—2014 Fine ceramics (advanced ceramics, advanced technical ceramics) -Mechanical properties of ceramic composites at high temperature in air at atmospheric pressure-Determination of fatigue properties at constant amplitude[S]. Geneva: The British Standards Institution, 2014: 1-15.
[5] ASTM C1360—2017 Standard practice for constant-amplitude, axial, tension-tension cyclic fatigue of continuous fiber-reinforced advanced ceramics at ambient temperatures[S]. West Conshohocken, PA: ASTM International, 2017: 1-9.
[6] ASTM C1337—2017 Standard test method for creep and creep rupture of continuous fiber-reinforced advanced ceramics under tensile loading at elevated temperature[S]. West Conshohocken, PA: ASTM International, 2017: 1-11.
[7] ISO 19604—2018 Fine ceramics (advanced ceramics, advanced technical ceramics) -Mechanical properties of ceramic composites at high temperature-Determination of stress-rupture time diagram under constant tensile loading[S]. Geneva: The British Standards Institution, 2018: 1-18.
[8] Luo H, Luo R Y, Wang L Y, et al. Effects of fabrication processes on the properties of SiC/SiC composites[J]. Ceramics International, 2021, 47(16): 22669-22676.
[9] Liu H, Li L, Yang J, et al. Characterization and modeling damage and fracture of prepreg-MI SiC/SiC composites under tensile loading at room temperature[J]. Applied Composite Materials, 2022, 29: 1167-1193.
[10] Carminati P, Jacques S, Rebillat F. Oxidation/corrosion of BN-based coatings as prospective interphases for SiC/SiC composites[J]. Journal of the European Ceramic Society, 2021, 41(5): 3120-3131.
[11] Bumgardner C H, Heim F M, Roache D C, et al. Analysis of SiC/SiC composites for energy applications at ambient conditions[J]. Journal of the American Ceramic Society, 2021, 104(1): 481-491.
[12] Dai J, Wang Y, Xu Z, et al. Effect of BN/SiC interfacial coatings on the tensile properties of SiC/SiC minicomposites fabricated by PIP[J]. Ceramics International, 2020, 46(16): 25058-25065.
[13] 焦健, 邱海鹏, 王宇, 等 . 不同界面层体系对 SiCf/SiC复合材料性能影响的研究[C]//第17届全国复合材料学术会议. 北京: 中国航空学会, 2012: 881-885.
[14] 杨金华, 吕晓旭, 焦健. 碳化硅陶瓷基复合材料界面层技术研究进展[J]. 航空制造技术, 2018, 61(11): 79-87.
[15] Zhang D, Liu Y, Liu H, et al. Characterisation of damage evolution in plain weave SiC/SiC composites using in situ X-ray micro-computed tomography[J]. Composite Structures, 2021, 275: 114447.
[16] 赵文青, 齐哲, 吕晓旭, 等. 界面层对CVI-mini SiCf/SiC复合材料力学性能的影响[J]. 材料工程, 2021, 49(7): 71-77.
[17] 陈明伟, 罗文东, 邱海鹏, 等 . 界面层对近化学计量比碳化硅纤维增强碳化硅复合材料性能的影响[J]. 稀有金属材料与工程, 2022, 51(2): 645-650.
[18] 周长城, 周新贵, 张长瑞, 等 . 制备工艺对碳纤维增强碳化硅基复合材料结构和力学性能的影响[J]. 稀有金属, 2005, 29(5): 666-669.
[19] 张冰玉, 王岭, 焦健, 等. 界面层对SiCf/SiC复合材料力学性能及氧化行为的影响[J]. 航空制造技术, 2017(12): 78-83.
[20] 于新民, 周万城, 郑文景, 等 . 碳界面层制备工艺对SiCf/SiC 材料力学性能的影响[J]. 稀有金属材料与工程, 2009, 38(增刊2): 462-465.
[21] 吕晓旭, 姜卓钰, 周怡然, 等. BN/SiC复合界面层对SiC纤维和 PIP-Mini 复合材料力学性能的影响[J]. 无机材料学报, 2020, 35(10): 1099-1104.
[22] Xu B, Chen D, Yang H, et al. Effect of strain rate on the tensile properties of mini-SiC/SiC composites[J]. Ceramics International, 2022, 48(2): 2092-2096.
[23] Fantozzi G, Reynaud P, Rouby D. Fatigue behaviour of structural ceramic composites[J]. Advances in Science and Technology, 2006, 45: 1664-1673.
[24] Dong H, Gao X, Zhang S, et al. Multi-scale modeling and experimental study of fatigue of plain-woven SiC/SiC composites[J]. Aerospace Science and Technology, 2021, 114: 106725.
[25] Zhang S, Gao X, Song Y, et al. Fatigue behavior and damage evolution of SiC/SiC composites under high-temperature anaerobic cyclic loading[J]. Ceramics International, 2021, 47(21): 29646-29652.
[26] Liu C, Shi D, Jing X, et al. Multiscale investigation on fatigue properties and damage of a 3D braided SiC/SiC + PyC/SiC composites in the full stress range at 1300℃ [J]. Journal of the European Ceramic Society, 2022, 42(4): 1208-1218.
[27] Zhu S, Mizuno M, Kagawa Y, et al. Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: A review[J]. Composites Science and Technology, 1999, 59(6): 833-851.
[28] Reynaud P, Rouby D, Fantozzi G. Cyclic fatigue behaviour at high temperature of self-healing ceramic matrix composite[J]. Annales De Chimie-Science Des Materiaux, 2005: 649-648.
[29] Ruggles-Wrenn M B, Kurtz G M. Notch Sensitivity of fatigue behavior of a Hi-Nicalon™/SiC-B4C composite at 1200℃ in air and in steam[J]. Applied Composite Materials, 2013, 20: 891-905.
[30] Ruggles-Wrenn M, Boucher N, Przybyla C. Fatigue of three advanced SiC/SiC ceramic matrix composites at 1200℃ in air and in steam[J]. International Journal of Applied Ceramic Technology, 2018, 15(1): 3-15.
[31] Ruggles-Wrenn M B, Lee M D. Fatigue behavior of an advanced SiC/SiC ceramic composite with a self-healing matrix at 1300℃ in air and in steam[J]. Materials Science and Engineering: A, 2016, 677: 438-445.
[32] Ojard G, Calomino A, Morscher G, et al. Post creep/dwell fatigue testing of MI SiC/SiC composites[J]. Mechanical Properties and Performance of Engineering Ceramics and Composites III, 2007: 135-143.
[33] Luo Z, Cao H, Ren H, et al. Tension-tension fatigue behavior of a PIP SiC/SiC composite at elevated temperature in air[J]. Ceramics International, 2016, 42(2): 3250-3260.
[34] Kim T T, Mall S, Zawada L P, et al. Simultaneous fatigue and combustion exposure of a SiC/SiC ceramic matrix composite[J]. Journal of Composite Materials, 2010, 44(25): 2991-3016.
[35] Ruggles-Wrenn M B, Christensen D T, Chamberlain A L, et al. Effect of frequency and environment on fatigue behavior of a CVI SiC/SiC ceramic matrix composite at 1200℃[J]. Composites Science and Technology, 2011, 71(2): 190-196.
[36] Mall S, LaRochelle K J. Fatigue and stress-rupture behaviors of SiC/SiC composite under humid environment at elevated temperature[J]. Composites Science and Technology, 2006, 66(15): 2925-2934.
[37] Shuler S F, Holmes J W, Wu X, et al. Influence of loading frequency on the room-temperature fatigue of a carbon-fiber/SiC-matrix composite[J]. Journal of the American Ceramic Society, 1993, 76(9): 2327-2336.
[38] Panakarajupally R P, Presby M J, Manigandan K, et al. Thermomechanical characterization of SiC/SiC ceramic matrix composites in a combustion facility[J]. Ceramics, 2019, 2(2): 407-425.
[39] Sabelkin V, Mall S, Cook T S, et al. Fatigue and creep behaviors of a SiC/SiC composite under combustion and laboratory environments[J]. Journal of Composite Materials, 2015, 50(16): 2145-2153.
[40] Almansour A S, Morscher G N. Tensile creep behavior of SiCf/SiC ceramic matrix minicomposites[J]. Journal of the European Ceramic Society, 2020, 40(15): 5132-5146.
[41] Bodet R, Bourrat X, Lamon J, et al. Tensile creep behaviour of a silicon carbide-based fibre with a low oxygen content[J]. Journal of Materials Science, 1995, 30(3): 661-677.
[42] Jaskowiak M H, DiCarlo J A. Pressure effects on the thermal stability of silicon carbide fibers[J]. Journal of the American Ceramic Society, 1989, 72(2): 192-197.
[43] Clauß B. Fibers for ceramic matrix composites[J]. Ceramic Matrix Composites, 2008: 1-20.
[44] DiCarlo J A, Yun H M. Non-oxide (silicon carbide) fibers[M]//Handbook of ceramic composites. Boston: Kluwer Academic Publishers, 2005: 33-52.
[45] Dong S M, Chollon G, Labrugère C, et al. Characterization of nearly stoichiometric SiC ceramic fibres[J]. Journal of Materials Science, 2001, 36(10): 2371-2381.
[46] Sauder C, Lamon J. Tensile creep behavior of SiC-based fibers with a low oxygen content[J]. Journal of the American Ceramic Society, 2007, 90(4): 1146-1156.
[47] Jing X, Yang X, Shi D, et al. Tensile creep behavior of three-dimensional four-step braided SiC/SiC composite at elevated temperature[J]. Ceramics International, 2017, 43(9): 6721-6729.
[48] Jing X, Cheng Z, Niu H, et al. Deformation and rupture behaviors of SiC/SiC under creep, fatigue and dwell-fatigue load at 1300 ℃ [J]. Ceramics International, 2019, 45(17): 21440-21447.
[49] Wang X, Song Z, Cheng Z, et al. Tensile creep properties and damage mechanisms of 2D-SiCf/SiC composites reinforced with low-oxygen high-carbon type SiC fiber[J]. Journal of the European Ceramic Society, 2020, 40(14): 4872-4878.
[50] Wilshire B, Bache M R. Creep damage resistance of ceramic-matrix composites[J]. Journal of the European Ceramic Society, 2007, 27(16): 4603-4611.
[51] Zhu S, Kagawa Y. Evaluation of creep behavior in SiC/SiC ceramic matrix composites[J]. 生产研究, 2001, 53(9): 466-469.
[52] Morscher G N. Tensile creep and rupture of 2D-woven SiC/SiC composites for high temperature applications[J]. Journal of the European Ceramic Society, 2010, 30(11): 2209-2221.
[53] Lamon J. Review: Creep of fibre-reinforced ceramic matrix composites[J]. International Materials Reviews, 2020, 65(1): 28-62.
[54] Morscher G N, Pujar V V. Design guidelines for in-plane mechanical properties of SiC fiber-reinforced melt-infiltrated SiC composites[J]. International Journal of Applied Ceramic Technology, 2009, 6(2): 151-163.
[55] Carrère P, Lamon J. Creep behaviour of a SiC/Si-B-C composite with a self-healing multilayered matrix[J]. Journal of the European Ceramic Society, 2003, 23(7): 1105-1114.
[56] 王西, 王克杰, 柏辉, 等 . 化学气相渗透 2D-SiCf/SiC 复合材料的蠕变性能及损伤机理[J]. 无机材料学报, 2020, 35(7): 5.
[57] Luan X, Xu X, Wang L, et al. Self-healing enhancing tensile creep of 2D-satin weave SiC/(SiC-SiBCN)x composites in wet oxygen environment[J]. Journal of the European Ceramic Society, 2020, 40(10): 3509-3519.
[58] Collier V E, Xu W, McMeeking R M, et al. Recession of BN coatings in SiC/SiC composites through reaction with water vapor[J]. Journal of the American Ceramic Society, 2022, 105(1): 498-511.
[59] Yang L, Xiao X, Jing L, et al. Dynamic oxidation mechanism of SiC fiber reinforced SiC matrix composite in high-enthalpy plasmas[J]. Journal of the European Ceramic Society, 2021, 41(10): 5388-5393.
[60] Morscher G N, John R, Zawada L, et al. Creep in vacuum of woven Sylramic-iBN melt-infiltrated composites[J]. Composites Science and Technology, 2011, 71(1): 52-59.
[61] Zhu S, Mizuno M, Nagano Y, et al. Creep and fatigue behavior in an enhanced SiC/SiC composite at high temperature[J]. Journal of the American Ceramic Society, 1998, 81(9): 2269-2277.
[62] Zhu S, Mizuno M, Kagawa Y, et al. Creep and fatigue behavior in Hi-Nicalon-fiber-reinforced silicon carbide composites at high temperatures[J]. Journal of the American Ceramic Society, 1999, 82(1): 117-128.
[63] Wu X, Holmes J W. Tensile creep and creep-strain recovery behavior of silicon carbide fiber/calcium aluminosilicate matrix ceramic composites[J]. Journal of the American Ceramic Society, 1993, 76(10): 2695-2700.
[64] Bhatt R T, Kiser J D. Creep behavior and failure mechanisms of CVI and PIP SiC/SiC composites at temperatures to 1650℃ in air[J]. Journal of the European Ceramic Society, 2021, 41(13): 6196-6206.
[65] Morscher G N, Pujar V V. Creep and stress-strain behavior after creep for SiC fiber reinforced, melt-infiltrated SiC matrix composites[J]. Journal of the American Ceramic Society, 2006, 89(5): 1652-1658.