Exclusive: Aeronautical composite technology

Process validation and cure kinetics of adhesive foam for composite structural applications

  • QIAO Haitao ,
  • LIANG Bin ,
  • LI Ximin ,
  • CHEN Ge ,
  • ZHANG Liguo
Expand
  • 1. Stealth Materials and Coating Lab, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
    2. Standards & Materials Institute, AVIC The First Aircraft Design and Research Institute, Xi'an 710089, China
    3. Composites Materials Factory, AVIC Xi'an Aircraft Industry (Group) Company Ltd., Xi'an 710089, China

Received date: 2022-11-29

  Revised date: 2023-04-17

  Online published: 2023-06-01

Abstract

The curing process and cure kinetics of a high-temperature cured adhesive foam have been investigated by dynamic differential scanning calorimetry (DSC) experiments. In the DSC measurements,heating rates of 1, 2.718, 7.389 and 20 K·min-1 were used such that lnβ would be 0, 1, 2 and 3, therefore, values of T1 and ΔT could be easily and quickly determined so as to estimate the apparent activation energy more easily. Linear relationships have been proven to frequently exist between Tp with lnβ by means of a series of reference data from papers about heating cure, thermal decomposition and crystallization of some polymers. The obtained linear equation of Tp versus lnβ can be used to explain some laws for higher or lower of apparent activation energies (Ea), and the apparent activation energy (Ea) can be quickly determined.

Cite this article

QIAO Haitao , LIANG Bin , LI Ximin , CHEN Ge , ZHANG Liguo . Process validation and cure kinetics of adhesive foam for composite structural applications[J]. Science & Technology Review, 2023 , 41(9) : 58 -66 . DOI: 10.3981/j.issn.1000-7857.2023.09.007

References

[1] 乔海涛, 邹贤武, 齐楠 . 一种耐高温发泡胶的性能研究[J]. 粘接, 2003, 24(5): 27-29.
[2] 乔海涛, 邹贤武. FM490A发泡胶的评估[C]//北京粘接学会第十八届年会暨胶粘剂、密封剂技术发展论坛论文集. 北京: 北京粘接学会, 2009.
[3] 乔海涛, 梁滨, 张军营, 等. 先进复合材料结构胶接体系的研发与应用[J]. 材料工程, 2018, 46(12): 38-47.
[4] 乔海涛, 邹贤武, 赖士洪 . 固化温度对 SY-H2 胶黏剂性能的影响[J]. 航空材料学报, 2002, 22(1): 46-50.
[5] 乔海涛. 胶黏剂及复合材料树脂固化活化能的简易求解[J]. 纤维复合材料, 2020, 37(4): 39-42.
[6] Qiao H T, Wang Z Y, Song J P. Kinetic laws of heating initiated reactions for materials in aerospace applications[J]. Aerospace China, 2021, 22(3): 54-61.
[7] 乔海涛 . 粉状发泡胶固化工艺和动力学研究[J]. 纤维复合材料, 2021, 38(2): 29-33.
[8] 卢晓东, 黄玉东, 张春华 . 环氧树脂/苯并噁唑二胺体系的固化动力学及热性能研究[J]. 固体火箭技术, 2008, 31(3): 295-298.
[9] 周红军, 尹国强, 林轩, 等 . 环氧树脂/活化纳米氧化铝复合材料的固化动力学[J]. 化 工 学 报 , 2011, 62(6): 1749-1755.
[10] 刘宏, 单国荣, 潘鹏举. 聚酯树脂粉末涂料的固化行为[J]. 化工学报, 2012, 63(4): 1315-1320.
[11] 李晓靓, 柴春鹏, 李昌峰, 等 . 非等温 DSC 法研究甲壳型液晶 PBPCS 改性环氧树脂的固化动力学[J]. 高分子学报, 2013(9): 1190-1196.
[12] 许胜, 陈建, 何阳, 等 . 耐高温不饱和聚酯树脂的制备与固化[J]. 石油化工, 2013, 42(7): 802-806.
[13] 廖进彬, 姜其斌, 曾智, 等 . 苯并嗪改性环氧酸酐体系的固化机理及动力学[J]. 化工学报, 2014, 65(3): 929-933.
[14] 张西莹, 刘育红 . 酚醛树脂/碳化硼/聚硼氮烷复合物的固化行为及其热解性能[J]. 化工学报, 2014, 65(8): 3269-3276.
[15] 唐卿珂, 梁国正, 易强, 等 . 促进剂种类对 EP/PN 体系固化反应动力学的影响[J]. 工程塑料应用, 2014, 42(8): 94-96.
[16] 覃洁, 邓卫星, 钟元伟, 等 . 二甲基硅烷芴基环氧树脂的合成、表征及非等温固化动力学分析[J]. 有机硅材料, 2014, 28(5): 343-348.
[17] 曹伟伟, 朱波, 朱文滔, 等 . 基于非等温法的耐高温环氧树脂体系固化反应动力学研究[J]. 材料工程, 2014(8): 67-71.
[18] 王权, 史铁钧, 张焱, 等 . 聚双胍/环氧树脂体系潜伏性固化过程[J]. 化工学报, 2015, 66(1): 464-470.
[19] 袁伟, 史铁钧, 钱莹, 等 . 降冰片烯酰亚胺型双苯并嗪的合成及性能[J]. 化工学报, 2016, 67(11): 4899-4905.
[20] Jiang D Y, Zhou Q, Fan Q, et al. Curing behavior and thermal performance of cyanate ester resin modified by poly (methyl-benzene diethynylbenzene) siliane[J]. Polymer Bulletin, 2015, 72(9): 2201-2214.
[21] Zhang Y, Yuan L, Chen F, et al. Cure kinetics of cyanate ester resin using microencapsulated dibutyltin dilaurate as catalyst[J]. Polymer Bulletin, 2017, 74(4):1011-1030.
[22] Wang Y C, Jiang X, Zhang C, et al. Synthesis of epoxide functionalized hyperbranched polyurethane and its blending with benzoxazine: Cure kinetics and thermal properties[J]. Polymer Bulletin, 2017, 74(10): 4209-4222.
[23] 徐艺, 贺强 . 非等温 DSC 法研究高温固化胶膜的固化动力学[J].材料导报, 2018, 32(增刊1): 529-531.
[24] 秦滢杰, 韩建平, 陈书华 . 一种氰酸酯-环氧树脂作为卫星结构件复合材料基体的评价[J]. 复合材料学报, 2018, 35(3): 528-536.
[25] 张成林, 董抒华, 李丽君, 等. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[26] 王建, 雷子萱, 姚家钰, 等 . 对苯二甲醛酚醛树脂的制备及其固化动力学研究[J]. 化工学报, 2022, 73(3):1403-1415.
[27] 王哲, 祖愿, 胡方圆, 等 . 含杂萘联苯结构的环氧树脂固化动力学分析[J]. 化工学报, 2022, 73(2): 681-688.
[28] 何端鹏, 高鸿, 邢焰, 等 . 航天器用氰酸酯基胶黏剂的固化模型及固化工艺设计[J]. 材料工程, 2020, 48(10):60-67.
[29] Wang C S, Leu T S. Thermally initiated cure kinetic of bismaleimides containing poly(dimethylsiloxane)[J]. Polymer, 1999, 40(19): 5407-5413.
[30] 黄吉甫, 王德润, 张保龙, 等 . 样条函数逼近法研究环氧树脂固化动力学[J]. 高等学校化学学报, 1984, 5(3):421-426.
[31] 李婷婷, 李艳霞, 陈超, 等. 603环氧树脂体系固化动力学模型的建立与验证[J]. 复合材料学报, 2018, 35(1):95-102.
[32] Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702-1706.
[33] Blaine R L, Kissinger H E. Homer Kissinger and the Kissinger equation[J] . Thermochimica Acta, 2012, 540: 1-6.
[34] Xia S. Polymer nanocomposites for high-temperature composites repair[D]. Ames: Iowa State University, 2008.
[35] 乔海涛, 邹贤武 . SY-H1糊状胶粘剂性能研究[J].航空材料学报, 2002, 22(4): 40-45.
[36] 乔海涛, 包建文, 钟翔屿, 等 . 氰酸酯树脂的改性与固化特性的热分析[J]. 航空材料学报, 2019, 39(6): 63-72.
[37] Yang M, Wang D M, Sun N W, et al. Rheological behaviour and cure kinetic studies of a trifunctional phenylethynyl-terminated imide oligomer[J]. High Performance Polymers, 2015, 27(4): 449-457.
[38] Wellen R, Canedo E L. On the Kissinger equation and the estimate of activation energies for non-isothermal cold crystallization of PET[J]. Polymer Testing, 2014, 40: 33-38.
Outlines

/