Exclusive:Advanced train control technolog

Advances in the application research of rail transit robots

  • ZHU Ruixiang ,
  • PEI Xuan ,
  • HOU Taogang
Expand
  • School of Electronic Information Engineering, Beijing Jiaotong University, Beijing 100044, China

Received date: 2022-12-23

  Revised date: 2023-04-12

  Online published: 2023-06-26

Abstract

This paper summarizes the application of robotics in the three aspects of rail transit, i.e., equipment manu-facturing, maintenance inspection, and operation services. Combined with the development status of intel-ligent robot technology in this field, we summarize the key technology and challenges of robots. Thus to propose the future direction of the cooperation of robotics and rail transit.

Cite this article

ZHU Ruixiang , PEI Xuan , HOU Taogang . Advances in the application research of rail transit robots[J]. Science & Technology Review, 2023 , 41(10) : 43 -61 . DOI: 10.3981/j.issn.1000-7857.2023.10.004

References

[1] 朱志民, 方孝钟, 周勇, 等. 工业机器人在轨道交通制造中的应用现状及发展趋势[J]. 金属加工(热加工), 2021(1): 7-12.
[2] 黄建鹏 . 重型机械智能焊接应用现状及其发展趋势[J].金属加工(热加工), 2022(1): 18-21.
[3] 陈茂爱, 任文建, 闫建新, 等 . 焊接机器人技术[M]. 北京: 化学工业出版社, 2019: 28-30.
[4] Geng Y S, Lai M, Tian X C, et al. A novel seam extraction and path planning method for robotic welding of medium-thickness plate structural parts based on 3D vision[J]. Robotics and Computer-Integrated Manufacturing, 2023, 79: 102433.
[5] Xiao R Q, Xu Y L, Hou Z, et al. A novel visual guidance framework for robotic welding based on binocular cooperation[J]. Robotics and Computer-Integrated Manufacturing, 2022, 78: 102393.
[6] Liu C F, Shen J Q, Hu S S, et al. Seam tracking system based on laser vision and CGAN for robotic multi-layer and multi-pass MAG welding[J]. Engineering Applications of Artificial Intelligence, 2022, 116: 105377.
[7] Wang X W, Zhou X, Xia Z L, et al. A survey of welding robot intelligent path optimization[J]. Journal of Manufacturing Processes, 2021, 63: 14-23.
[8] Zheng C, An Y S, Wang Z X, et al. Hybrid offline programming method for robotic welding systems[J]. Robotics and Computer-Integrated Manufacturing, 2022, 73: 102238.
[9] Wang Q Y, Jiao W H, Wang P, et al. A tutorial on deep learning-based data analytics in manufacturing through a welding case study[J]. Journal of Manufacturing Processes, 2021, 63: 2-13.
[10] Kershaw J, Yu R, Zhang Y M, et al. Hybrid machine learning-enabled adaptive welding speed control[J]. Journal of Manufacturing Processes, 2021, 71: 374-383.
[11] Xiao X F, Liu X B, Cheng M P, et al. Towards monitoring laser welding process via a coaxial pyrometer[J]. Journal of Materials Processing Technology, 2020, 277: 116409.
[12] Yao P, Zhou K, Zhu Q. Quantitative evaluation method of arc sound spectrum based on sample entropy[J]. Mechanical Systems and Signal Processing, 2017, 92: 379-390.
[13] Lei Z K, Zou J C, Wang D W, et al. Finite-element inverse analysis of residual stress for laser welding based on a contour method[J]. Optics & Laser Technology, 2020, 129: 106289.
[14] Fan X A, Gao X D, Liu G Q, et al. Research and prospect of welding monitoring technology based on machine vision[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(11): 3365-3391.
[15] Li W M, Mei F, Hu Z, et al. Multiple weld seam laser vision recognition method based on the IPCE algorithm[J]. Optics & Laser Technology, 2022, 155: 108388.
[16] 刘亚军, 訾斌, 王正雨, 等 . 智能喷涂机器人关键技术研究现状及进展[J]. 机械工程学报, 2022, 58(7): 53-74.
[17] Qian H M, Li Y F, Huang H Z. Time-variant reliability analysis for industrial robot RV reducer under multiple failure modes using Kriging model[J]. Reliability Engineering and System Safety, 2020, 199: 106936.
[18] Guo S X, He Y L, Shi L W, et al. Modal and fatigue analysis of critical components of an amphibious spherical robot[J]. Microsyst Technologies, 2017, 23(6): 2233-2247.
[19] Xia M, Li T, Shu T X, et al. A two-stage approach for the remaining useful life prediction of bearings using deep neural networks[J]. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3703-3711.
[20] Liu J, Wang W, Ma F, et al. A data-model-fusion prognostic framework for dynamic system state forecasting[J]. Engineering Applications of Artificial Intelligence, 2012, 25(4): 814-823.
[21] 缪东晶, 王国磊, 吴聊, 等 . 自由曲面均匀喷涂的机器人轨迹规划方法[J].清华大学学报 (自然科学版), 2013, 53(10): 1418-1423.
[22] Chen H P, Fuhlbrigge T, Li X Z. A review of CADbased robot path planning for spray painting[J]. Industrial Robot, 2009, 36: 45-50.
[23] Tolba A S, Raafat H M. Multiscale image quality measures for defect detection in thin films[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(1): 113-122.
[24] Chen K Y, Zeng Z Y, Yang J F. A deep region-based pyramid neural network for automatic detection and multi-classification of various surface defects of aluminum alloys[J]. Journal of Building Engineering, 2021, 43: 102523.
[25] Xu R G, Hao R Y, Huang B Q. Efficient surface defect detection using self-supervised learning strategy and segmentation network[J]. Advanced Engineering Informatics, 2022, 52: 101566.
[26] 訾斌, 徐锋, 唐锴, 等 . 基于机器视觉的喷涂机器人轨迹规划与涂装质量检测研究综述[J]. 控制与决策, 2023, 38(1): 1-21.
[27] Chen Y, Chen W Z, Li B, et al. Paint thickness simulation for painting robot trajectory planning: A review[J]. Industrial Robot, 2017, 44: 629-638.
[28] Kim J Y. Vision-based measurement of part deformation and misalignment for deformable cylindrical peg-in-hole tasks[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2005, 219(6): 589-606.
[29] Triyonoputro J C, Wan W W, Harada K. Quickly inserting pegs into uncertain holes using multi-view images and deep network trained on synthetic data[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2020: 5792-5799.
[30] 程俊森, 吴文荣, 杨毅, 等 . 智能微装配技术研究综述[J]. 现代制造工程, 2022(6): 142-152.
[31] Kleeberger K, Bormann R, Kraus W, et al. A survey on learning-based robotic grasping[J]. Current Robotics Reports, 2020, 1(4): 239-249.
[32] Jing G Q, Qin X Y, Wang H Y, et al. Developments, challenges, and perspectives of railway inspection robots[J]. Automation in Construction, 2022, 138: 104242.
[33] Loccioni Felix. Robot for switches & crossings inspections[EB/OL]. (2021-05-21) [2022-12-16]. https://www.loccioni.com/en/railway.
[34] Loccioni Felix. The mobile robot for railway switches & crossings dimensional measurements[EB/OL]. (2018-08-16) [2022-12-16]. https://www. loccioni. com/wp-content/uploads/2018/08/loccioni-felix-a2-brochure.pdf.
[35] Zhang W Y, Zhang Z J, Qi D P, et al. Automatic crack detection and classification method for subway tunnel safety monitoring[J]. Sensors, 2014, 14(10): 19307-19328.
[36] Huang H W, Li Q T, Zhang D M. Deep learning based image recognition for crack and leakage defects of metro shield tunnel[J]. Tunnelling and Underground Space Technology, 2018, 77: 166-176.
[37] Phillips S, Narasimhan S. Automating data collection for robotic bridge inspections[J]. Journal of Bridge Engineering, 2019, 24(8): 04019075.
[38] 更轻快更智能更精准 第六代桥梁拉索检测机器人首次应用于跨江桥梁[J]. 西部交通科技, 2022(5): 209.
[39] Zheng Z L, Ding N, Chen H P, et al. CCRobot-V: A silkworm-like cooperative cable-climbing robotic system for cable inspection and maintenance[C]//2022 International Conference on Robotics and Automation(ICRA). Piscataway: IEEE, 2022: 164-170.
[40] Shenhao Technology. Robot product display[EB/OL].(2021-06-04) [2022-12-16]. https://www. shenhaoinfo. com/category/p2.
[41] Sánchez A, Bravo J L, González A. Estimating the accuracy of track-surveying trolley measurements for railway maintenance planning[J]. Journal of Surveying Engineering, 2017, 143(1): 05016008.
[42] Valigi M C, Logozzo S, Meli E, et al. New instrumented trolleys and a procedure for automatic 3D optical inspection of railways[J]. Sensors, 2020, 20(10): 2927.
[43] Ensco. Autonomous inspection systems[EB/OL]. [2023-03-12]. https://www. ensco. com/rail/autonomous-inspection-systems.
[44] Fugro. Fugro rila track geometry[EB/OL]. [2023-03-12]. https://media. fugro. com/media/docs/default-source/industries/business-infrastructure/rila-track-geometry_2018. pdf?sfvrsn=804a081a_16.
[45] AEVEX Aerospace. Geo-MMS LiDAR used for railway drone inspection[EB/OL]. [2023-03-12]. https://geodetics.com/railway-drone-inspection/.
[46] Shi B, Yang M, Liu J, et al. Rail transit shield tunnel deformation detection method based on cloth simulation filtering with point cloud cylindrical projection[J]. Tunnelling and Underground Space Technology, 2023, 135: 105031.
[47] Sutter B, Lelevé A, Pham M T, et al. A semi-autonomous mobile robot for bridge inspection[J]. Automation in Construction, 2018, 91: 111-119.
[48] Jiang S, Wu Y Q, Zhang J. Bridge coating inspection based on two-stage automatic method and collision-tolerant unmanned aerial system[J]. Automation in Construction, 2023, 146: 104685.
[49] 林瑞宣 . 轨道交通站内服务机器人设计研究[D]. 北京: 北京交通大学建筑与艺术学院, 2021.
[50] McGinn C. Why do robots need a head? the role of social interfaces on service robots[J]. International Journal of Social Robotics, 2020, 12(1): 281-295.
[51] Deuerlein C, Langer M, Seßner J, et al. Human-robot-interaction using cloud-based speech recognition systems[J]. Procedia CIRP, 2021, 97: 130-135.
[52] 陈赢峰 . 大规模复杂场景下室内服务机器人导航的研究[D]. 合肥: 中国科学技术大学, 2017.
[53] Henkel C, Bubeck A, Xu W L. Energy efficient dynamic window approach for local path planning in mobile service robotics[J]. IFAC-PapersOnLine, 2016, 49(15): 32-37.
[54] Wilson A N, Kumar A, Jha A, et al. Embedded sensors, communication technologies, computing platforms and machine learning for UAVs: A review[J]. IEEE Sensors Journal, 2022, 22(3): 1807-1826.
[55] Martinez-Martin E, del Pobil A P. Object detection and recognition for assistive robots: Experimentation and implementation[J]. IEEE Robotics & Automation Magazine, 2017, 24(3): 123-138.
[56] Chen S F, Yang D Z, Liu J, et al. Automatic weld type classification, tacked spot recognition and weld ROI determination for robotic welding based on modified YOLOv5[J]. Robotics and Computer-Integrated Manufacturing, 2023, 81: 102490.
[57] Li Q Y, Shi Z P, Zhang H Y, et al. A cyber-enabled visual inspection system for rail corrugation[J]. Future Generation Computer Systems, 2018, 79(1): 374-382.
[58] Wei X K, Yang Z M, Liu Y X, et al. Railway track fastener defect detection based on image processing and deep learning techniques: A comparative study[J]. Engineering Applications of Artificial Intelligence, 2019, 80: 66-81.
[59] Wang T G, Yang F F, Tsui K L. Real-time detection of railway track component via one-stage deep learning networks[J]. Sensors, 2020, 20(15): 4325.
[60] Singh J K, Singh K D, Thakur K, et al. Computer-vision based object detection and recognition for service robot in indoor environment[J]. Com-puters, Materials & Continua, 2022, 72(1): 197-213.
[61] Sánchez-Ibáñez J R, Pérez-del-Pulgar C J, García-Cerezo A. Path planning for autonomous mobile robots: A review[J]. Sensors, 2021, 21(23): 7898.
[62] Li G H, Tong S G, Cong F Y, et al. Improved artificial potential field-based simultaneous forward search method for robot path planning in complex environment[C]//2015 IEEE/SICE International Symposium on System Integration (SII). Piscataway: IEEE, 2016: 760-765.
[63] Ulrich I, Borenstein J. VFH: Local obstacle avoidance with look-ahead verification[C]//Proceedings 2000 ICRA. Millennium Conference. IEEE Interna-tional Conference on Robotics and Automation. Symposia Proceedings. Piscataway: IEEE Press, 2002: 2505-2511.
[64] Mac T T, Copot C, Tran D T, et al. Heuristic approaches in robot path planning: A survey[J]. Robotics and Autonomous Systems, 2016, 86: 13-28.
[65] Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1): 269-271.
[66] Hart P E, Nilsson N J, Raphael B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107.
[67] Stentz A. Optimal and efficient path planning for partially-known environments[C]//Proceedings of the 1994 IEEE International Conference on Robot-ics and Automation. Piscataway: IEEE, 2002: 3310-3317.
[68] Suh J, Gong J, Oh S. Fast sampling-based cost-aware path planning with nonmyopic extensions using cross entropy[J]. IEEE Transactions on Robotics, 2017, 33(6):1313-1326.
[69] Zhou X, Wang X W, Xie Z H, et al. Online obstacle avoidance path planning and application for arc welding robot[J]. Robotics and Computer-Integrated Manufacturing, 2022, 78: 102413.
[70] Tonon D, Aronna M S, Kalise D. Optimal control: Novel directions and applications[M]. Cham: Springer International Publishing, 2017.
[71] Liu Z H, Liu Q, Xu W J, et al. Robot learning towards smart robotic manufacturing: A review[J]. Robotics and Computer-Integrated Manufacturing, 2022, 77: 102360.
[72] Meng T T, He W. Iterative learning control of a robotic arm experiment platform with input constraint[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 664-672.
[73] Yin X X, Pan L. Enhancing trajectory tracking accuracy for industrial robot with robust adaptive control[J]. Robotics and Computer-Integrated Manufacturing, 2018, 51: 97-102.
[74] Yu J. Adaptive resistance spot welding process that reduces the shunting effect for automotive high-strength steels[J]. Metals, 2018, 8(10): 775.
[75] Yang C G, Jiang Y M, Na J, et al. Finite-time convergence adaptive fuzzy control for dual-arm robot with unknown kinematics and dynamics[J]. IEEE Transactions on Fuzzy Systems, 2018, 27(3): 574-588.
[76] Zhang K, Li D Y, Gui H, et al. Adaptive control for laser welding with filler wire of marine high strength steel with tight butt joints for large structures[J]. Journal of Manufacturing Processes, 2018, 36: 434-441.
[77] Liu Y K, Zhang Y M. Model-based predictive control of weld penetration in gas tungsten arc welding[J]. IEEE Transactions on Control Systems Technology, 2014, 22(3): 955-966.
[78] Lyu S K, Cheah C C. Data-driven learning for robot control with unknown Jacobian[J]. Automatica, 2020, 120: 109120.
[79] de Luca A, Flacco F. Integrated control for pHRI: Collision avoidance, detection, reaction and collaboration[C]//2012 4th IEEE RAS & EMBS Internation-al Conference on Biomedical Robotics and Biomechatronics (BioRob). Piscataway: IEEE Press, 2012: 288-295.
[80] Hjorth S, Chrysostomou D. Human-robot collaboration in industrial environments: A literature review on non-destructive disassembly[J]. Robotics and Computer-Integrated Manufacturing, 2022, 73: 102208.
[81] Villani V, Pini F, Leali F, et al. Survey on human-robot collaboration in industrial settings: Safety, intuitive interfaces and applications[J]. Mechatronics, 2018, 55: 248-266.
[82] Ong S K, Yew A W W, Thanigaivel N K, et al. Augmented reality-assisted robot programming system for industrial applications[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61: 101820.
[83] Masood T, Egger J. Augmented reality in support of Industry 4.0—implementation challenges and success factors[J]. Robotics and Computer-Integrated Manufacturing, 2019, 58: 181-195.
[84] Peng L L, Zheng S B, Li P X, et al. A comprehensive detection system for track geometry using fused vision and inertia[J]. IEEE Transactions on Instrumentation and Measurement, 2020, doi: 10.1109/TIM.2020.3039301.
Outlines

/