[1] 李琳琳, 卢少勇, 孟伟, 等. 长江流域重点湖泊的富营养化及防治[J]. 科技导报, 2017, 35(9): 13-22.
[2] Rout P R, Shahid M K, Dash R R, et al. Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced technologies[J]. Journal of Environmental Management, 2021, 296: 113246.
[3] 郑怀礼, 李俊, 孙强, 等. 城镇污水处理自动控制策略研究进展[J]. 土木与环境工程学报(中英文), 2020, 42(1): 126-134.
[4] Du M, Zhang Y, Wang Z, et al. Insight into the synthesis and adsorption mechanism of adsorbents for efficient phosphate removal: Exploration from synthesis to modification[J]. Chemical Engineering Journal, 2022, 442: 136147.
[5] Zahed M A, Salehi S, Tabari Y, et al. Phosphorus removal and recovery: State of the science and challenges[J].Environmental Science and Pollution Research, 2022, 29(39): 58561-58589.
[6] Gally C, García-Gabaldón M, Ortega E M, et al. Chronopotentiometric study of the transport of phosphoric acid anions through an anion-exchange membrane under different pH values[J]. Separation and Purification Technology, 2019, 238: 116421.
[7] Li X, Shen S, Xu Y, et al. Application of membrane separation processes in phosphorus recovery: A review[J]. Science of the Total Environment, 2021, 767: 144346.
[8] Wang Y, Kuntke P, Saakes M, et al. Electrochemically mediated precipitation of phosphate minerals for phosphorus removal and recovery: Progress and perspective[J]. Water Research, 2022, 209: 117891.
[9] 王亚军, 耿冲冲, 许妍, 等. 不同强化手段对生物滞留池脱氮除磷性能的影响[J]. 中国给水排水, 2020, 36(19): 77-82.
[10] Zheng S M, Wang X Y, Chen C H, et al. Synergetic effects of iron-carbon micro-electrolysis integrating with other technologies[J]. IOP Conference Series: Earth and Environmental Science, 2019, 344(1): 012111.
[11] Narayanasamydamodaran S, Zuo J, Ren H, et al. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Frontiers of Environmental Science & Engineering, 2021, 15(4): 1-14.
[12] 严子春, 程攀 . 多孔富铁组合填料化学除磷的化学动力学分析[J]. 环境工程学报, 2016, 10(9): 4668-4672.
[13] 冯洪波, 潘增锐, 盛建龙, 等 . 利用废弃铁刨花去除污水中的磷[J]. 中国给水排水, 2022, 38(7): 86-89.
[14] 梁学颖, 马鲁铭, 章智勇. 催化铁与生物耦合工艺条件下表面附着层特征分析[J]. 中国环境科学, 2015, 35(5): 1343-1350.
[15] Li W, Gao M , Wang H, et al. Enhanced biological phosphorus removal in low-temperature sewage with ironcarbon SBR system[J]. Environmental Technology, 2022, doi: 10.1080/09593330.2022.2049889.
[16] Jia X, Otte M L, Liu Y, et al. Performance of iron plaque of wetland plants for regulating iron, manganese, and phosphorus from agricultural drainage water[J]. Water, 2018, 10(1): 42.
[17] Wang G, Qian L, Yong X, et al. Synthesis of a ternary microscopic ball-shaped micro-electrolysis filler and its application in wastewater treatment[J]. Separation and Purification Technology, 2021, 275: 119131.
[18] Peng Y Y, He S, Wu F. Biochemical processes mediated by iron-based materials in water treatement: Enhancing nitrogen and phosphorus removal in low C/N ratio wastewater[J]. Science of the Total Environment, 2021, 775: 145137.
[19] Fan J H, Ma L M. The pretreatment by the Fe-Cu process for enhancing biological degradability of the mixed wastewater[J]. Journal of Hazardous Materials, 2009, 164(2-3): 1392-1397.
[20] Duan C, Huang X, Gao J, et al. Iron-carbon (Fe-C) micro-electrolysis coupling with anaerobic-anoxic-oxic(A2/O) process: Nitrogen and phosphorus removal performance and microbial characteristics[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107235.
[21] 潘碌亭, 董恒杰, 吴超, 等 . 铁碳催化内电解-A/O 工艺处理印刷线路板综合废水[J]. 环境工程, 2017, 35(4): 40-44.
[22] 刘霞, 樊金红, 马鲁铭. 催化铁内电解工艺预处理混合化工废水的工程应用[J]. 中国给水排水, 2007(24): 27-29.
[23] Ma L M, Zhang W X. Enhanced biological treatment of industrial wastewater with bimetallic zero-valent iron[J]. Environmental Science & Technology, 2008, 42(15): 5384-5389.
[24] Zhang L, Yue Q, Yang K, et al. Enhanced phosphorus and ciprofloxacin removal in a modified BAF system by configuring Fe-C micro electrolysis: Investigation on pollutants removal and degradation mechanisms[J]. Journal of Hazardous Materials, 2018, 342: 705-714.
[25] 唐婧, 杨羽菲, 陈金楠. 微电解耦合固相反硝化脱氮除磷效果及微生物分析[J]. 环境工程学报, 2020, 14(5): 1224-1233.
[26] 陆雪梅, 陈雷, 刘志英, 等 . 应用钙法除磷-碱解-微电解组合工艺预处理吡虫啉农药废水[J]. 环境工程学报, 2008(12): 1609-1612.
[27] 来同丽, 张敏东, 梅荣武. 铁碳微电解Fenton耦合磁粉类 Fenton预处理有机磷农药废水研究[J]. 水处理技术, 2017, 43(6): 103-107.
[28] 纪振, 吕文明, 王旭波, 等 . 物化预处理-CASS 工艺处理农药中间体废水工程实例[J]. 工业水处理, 2019, 39(3): 96-99.
[29] 王震, 王长智, 许青兰, 等 . 微电解耦合非均相 Fenton 法处理印染废水膜浓缩液[J]. 工业水处理, 2021, 41(4): 48-51.
[30] 罗凯 . 三维电极-铁碳微电解一体式反应器处理垃圾渗滤液的实验研究[D]. 南昌: 南昌大学, 2014.
[31] Zhang L, Gao Y, Yue Q, et al. Prepartion and application of novel blast furnace dust based catalytic-ceramicfiller in electrolysis assisted catalytic micro-electrolysis system for ciprofloxacin wastewater treatment[J]. Journal of Hazardous Materials, 2020, 383: 121215.
[32] 刘飞萍, 马鲁铭 . 催化铁与生物法耦合除磷工艺特性[J]. 环境工程学报, 2014, 8(2): 429-435.
[33] 刘钰, 刘飞萍, 刘霞, 等 . 催化铁耦合生物除磷工艺中生物与化学除磷的关系[J]. 环境工程学报, 2016, 10(2): 611-616.
[34] Peng S, Deng S, Li D, et al. Iron-carbon galvanic cells strengthened anaerobic/anoxic/oxic process (Fe/C-A2O) for high- nitrogen/phosphorus and low-carbon sewage treatment[J]. Science of the Total Environment, 2020, 722: 137657.
[35] 周鹏飞, 喻一萍, 马鲁铭 . 催化铁内电解强化 CAST 工艺生物脱氮除磷的研究[J]. 水处理技术, 2011, 37(11): 96-99.
[36] 郑炜晔 . 基于铁质载体与生物耦合深度处理低 C/N 比生活污水的研究[D]. 北京: 北京交通大学, 2018.
[37] 张超, 刘玲花 . 铁基质强化新型功能性化粪池高效处理黑水的试验[J]. 中国环境科学, 2020, 40(6): 2435-2444.
[38] 白杨 . 铁碳微电解填料制备及其强化曝气生物滤池污水除磷研究[D]. 吉林: 东北电力大学, 2020.
[39] Hu Z, Li D, Liu Y, et al. Performance of chemical catalytic biofilm technology for decentralized sewage treatment[J]. Environmental Engineering Science, 2020, 37(11): 757-768.
[40] Guo T, Ji Y, Zhao J, et al. Coupling of Fe-C and aerobic granular sludge to treat refractory wastewater from a membrane manufacturer in a pilot-scale system[J]. Water Research, 2020, 186: 116331.
[41] Pan Z, Guo T, Sheng J, et al. Adding waste iron shavings in reactor to develop aerobic granular sludge and enhance removal of nitrogen and phosphorus[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106620.
[42] Chen L, Quan X, Gao Z, et al. A composite Fe-C/layered double oxides (Fe-C/LDO) carrier fabrication and application for enhanced removal of nitrate and phosphate from polluted water with a low carbon/nitrogen ratio[J]. Journal of Cleaner Production, 2022, 352: 131628.
[43] Terashima M, Yama A, Sato M, et al. Culture-dependent and-independent identification of polyphosphate-accumulating Dechloromonas spp. Predominating in a full-scale oxidation ditch wastewater treatment plant[J]. Microbes and Environments, 2016, 31(4): 449-455.
[44] Nielsen P H, McIlroy S J, Albertsen M, et al. Re-evaluating the microbiology of the enhanced biological phosphorus removal process[J]. Current Opinion in Biotechnology, 2019, 57: 111-118.
[45] 刘学燕, 侯琮语, 李德生, 等. 基于铁碳物化-生物耦合法的新型湿地填料研究[J]. 人民黄河, 2018, 40(11): 92-96.
[46] Deng S, Xie B, Kong Q, et al. An oxic/anoxic-integrated and Fe/C micro-electrolysis-mediated vertical constructed wetland for decentralized low-carbon greywater treatment[J]. Bioresource Technology, 2020, 315: 123802.
[47] Zheng X, Jin M, Zhou X, et al. Enhanced removal mechanism of iron carbon micro-electrolysis constructed wetland on C, N, and P in salty permitted effluent of wastewater treatment plant[J]. Science of the Total Environment, 2019, 649: 21-30.
[48] Ji B, Jiang M, Yang Y, et al. High treatment effectiveness for secondary effluent in Fe-C microelectrolysis constructed wetlands with electron donor supplementation[J]. Journal of Cleaner Production, 2022, 342: 130934.
[49] 刘霞, 马鲁铭, 魏宏斌, 等 . 催化铁内电解池后置处理废水的方法: CN1843982[P]. 2006-10-11.
[50] 李少林, 魏宏斌, 马鲁铭, 等 . 物化-生化-物化工艺处理精细化工废水的中试[J]. 中国给水排水, 2007(1): 92-96.
[51] 马嘉敏 . 基于微电解法的污水厂尾水深度除磷研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.