Exclusive: Environmental pollution and green development

Research progress of catalytic iron internal electrolysis coupled biological phosphorus removal technology

  • ZHOU Kaile ,
  • YANG Lin ,
  • LI Xiatong ,
  • HAN Pan ,
  • SUN Weining ,
  • CHENG Gang
Expand
  • School of Environmental and Chemical Engineering, Xi' an Polytechnic University, Xi'an 710048, China

Received date: 2022-06-07

  Revised date: 2022-09-27

  Online published: 2023-06-29

Abstract

Catalytic iron internal electrolysis coupled biological phosphorus removal can effectively solve the problems of low efficiency of biological phosphorus removal, large dosage of chemical phosphorus removal and difficult process control. It has a broad application prospect. This paper introduces the mechanism of phosphorus removal by catalytic iron internal electrolysis coupled with biological method, emphatically analyzes the influence of three coupling modes of catalytic iron internal electrolysis and biological method on phosphorus removal effect, and points out that the biological preprocessing has a strong ability to resist impact load and can simultaneously realize phosphorus removal, reduce biological toxicity and improve the biodegradability of wastewater. In the biological built-in process, the catalytic iron internal electrolysis filler as the biological carrier greatly improves the number and activity of microorganisms, highlights the electrochemical high-efficiency phosphorus removal, and strengthens the biological nitrogen and phosphorus removal capacity. The biological post processing can effectively slow down the fouling on the surface of packing but it is rarely concerned because of its effluent chromaticity. It is concluded that new materials for catalytic iron internal electrolysis and their coupling process with biological method are still the main research direction in the future.

Cite this article

ZHOU Kaile , YANG Lin , LI Xiatong , HAN Pan , SUN Weining , CHENG Gang . Research progress of catalytic iron internal electrolysis coupled biological phosphorus removal technology[J]. Science & Technology Review, 2023 , 41(11) : 89 -95 . DOI: 10.3981/j.issn.1000-7857.2023.11.009

References

[1] 李琳琳, 卢少勇, 孟伟, 等. 长江流域重点湖泊的富营养化及防治[J]. 科技导报, 2017, 35(9): 13-22.
[2] Rout P R, Shahid M K, Dash R R, et al. Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced technologies[J]. Journal of Environmental Management, 2021, 296: 113246.
[3] 郑怀礼, 李俊, 孙强, 等. 城镇污水处理自动控制策略研究进展[J]. 土木与环境工程学报(中英文), 2020, 42(1): 126-134.
[4] Du M, Zhang Y, Wang Z, et al. Insight into the synthesis and adsorption mechanism of adsorbents for efficient phosphate removal: Exploration from synthesis to modification[J]. Chemical Engineering Journal, 2022, 442: 136147.
[5] Zahed M A, Salehi S, Tabari Y, et al. Phosphorus removal and recovery: State of the science and challenges[J].Environmental Science and Pollution Research, 2022, 29(39): 58561-58589.
[6] Gally C, García-Gabaldón M, Ortega E M, et al. Chronopotentiometric study of the transport of phosphoric acid anions through an anion-exchange membrane under different pH values[J]. Separation and Purification Technology, 2019, 238: 116421.
[7] Li X, Shen S, Xu Y, et al. Application of membrane separation processes in phosphorus recovery: A review[J]. Science of the Total Environment, 2021, 767: 144346.
[8] Wang Y, Kuntke P, Saakes M, et al. Electrochemically mediated precipitation of phosphate minerals for phosphorus removal and recovery: Progress and perspective[J]. Water Research, 2022, 209: 117891.
[9] 王亚军, 耿冲冲, 许妍, 等. 不同强化手段对生物滞留池脱氮除磷性能的影响[J]. 中国给水排水, 2020, 36(19): 77-82.
[10] Zheng S M, Wang X Y, Chen C H, et al. Synergetic effects of iron-carbon micro-electrolysis integrating with other technologies[J]. IOP Conference Series: Earth and Environmental Science, 2019, 344(1): 012111.
[11] Narayanasamydamodaran S, Zuo J, Ren H, et al. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Frontiers of Environmental Science & Engineering, 2021, 15(4): 1-14.
[12] 严子春, 程攀 . 多孔富铁组合填料化学除磷的化学动力学分析[J]. 环境工程学报, 2016, 10(9): 4668-4672.
[13] 冯洪波, 潘增锐, 盛建龙, 等 . 利用废弃铁刨花去除污水中的磷[J]. 中国给水排水, 2022, 38(7): 86-89.
[14] 梁学颖, 马鲁铭, 章智勇. 催化铁与生物耦合工艺条件下表面附着层特征分析[J]. 中国环境科学, 2015, 35(5): 1343-1350.
[15] Li W, Gao M , Wang H, et al. Enhanced biological phosphorus removal in low-temperature sewage with ironcarbon SBR system[J]. Environmental Technology, 2022, doi: 10.1080/09593330.2022.2049889.
[16] Jia X, Otte M L, Liu Y, et al. Performance of iron plaque of wetland plants for regulating iron, manganese, and phosphorus from agricultural drainage water[J]. Water, 2018, 10(1): 42.
[17] Wang G, Qian L, Yong X, et al. Synthesis of a ternary microscopic ball-shaped micro-electrolysis filler and its application in wastewater treatment[J]. Separation and Purification Technology, 2021, 275: 119131.
[18] Peng Y Y, He S, Wu F. Biochemical processes mediated by iron-based materials in water treatement: Enhancing nitrogen and phosphorus removal in low C/N ratio wastewater[J]. Science of the Total Environment, 2021, 775: 145137.
[19] Fan J H, Ma L M. The pretreatment by the Fe-Cu process for enhancing biological degradability of the mixed wastewater[J]. Journal of Hazardous Materials, 2009, 164(2-3): 1392-1397.
[20] Duan C, Huang X, Gao J, et al. Iron-carbon (Fe-C) micro-electrolysis coupling with anaerobic-anoxic-oxic(A2/O) process: Nitrogen and phosphorus removal performance and microbial characteristics[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107235.
[21] 潘碌亭, 董恒杰, 吴超, 等 . 铁碳催化内电解-A/O 工艺处理印刷线路板综合废水[J]. 环境工程, 2017, 35(4): 40-44.
[22] 刘霞, 樊金红, 马鲁铭. 催化铁内电解工艺预处理混合化工废水的工程应用[J]. 中国给水排水, 2007(24): 27-29.
[23] Ma L M, Zhang W X. Enhanced biological treatment of industrial wastewater with bimetallic zero-valent iron[J]. Environmental Science & Technology, 2008, 42(15): 5384-5389.
[24] Zhang L, Yue Q, Yang K, et al. Enhanced phosphorus and ciprofloxacin removal in a modified BAF system by configuring Fe-C micro electrolysis: Investigation on pollutants removal and degradation mechanisms[J]. Journal of Hazardous Materials, 2018, 342: 705-714.
[25] 唐婧, 杨羽菲, 陈金楠. 微电解耦合固相反硝化脱氮除磷效果及微生物分析[J]. 环境工程学报, 2020, 14(5): 1224-1233.
[26] 陆雪梅, 陈雷, 刘志英, 等 . 应用钙法除磷-碱解-微电解组合工艺预处理吡虫啉农药废水[J]. 环境工程学报, 2008(12): 1609-1612.
[27] 来同丽, 张敏东, 梅荣武. 铁碳微电解Fenton耦合磁粉类 Fenton预处理有机磷农药废水研究[J]. 水处理技术, 2017, 43(6): 103-107.
[28] 纪振, 吕文明, 王旭波, 等 . 物化预处理-CASS 工艺处理农药中间体废水工程实例[J]. 工业水处理, 2019, 39(3): 96-99.
[29] 王震, 王长智, 许青兰, 等 . 微电解耦合非均相 Fenton 法处理印染废水膜浓缩液[J]. 工业水处理, 2021, 41(4): 48-51.
[30] 罗凯 . 三维电极-铁碳微电解一体式反应器处理垃圾渗滤液的实验研究[D]. 南昌: 南昌大学, 2014.
[31] Zhang L, Gao Y, Yue Q, et al. Prepartion and application of novel blast furnace dust based catalytic-ceramicfiller in electrolysis assisted catalytic micro-electrolysis system for ciprofloxacin wastewater treatment[J]. Journal of Hazardous Materials, 2020, 383: 121215.
[32] 刘飞萍, 马鲁铭 . 催化铁与生物法耦合除磷工艺特性[J]. 环境工程学报, 2014, 8(2): 429-435.
[33] 刘钰, 刘飞萍, 刘霞, 等 . 催化铁耦合生物除磷工艺中生物与化学除磷的关系[J]. 环境工程学报, 2016, 10(2): 611-616.
[34] Peng S, Deng S, Li D, et al. Iron-carbon galvanic cells strengthened anaerobic/anoxic/oxic process (Fe/C-A2O) for high- nitrogen/phosphorus and low-carbon sewage treatment[J]. Science of the Total Environment, 2020, 722: 137657.
[35] 周鹏飞, 喻一萍, 马鲁铭 . 催化铁内电解强化 CAST 工艺生物脱氮除磷的研究[J]. 水处理技术, 2011, 37(11): 96-99.
[36] 郑炜晔 . 基于铁质载体与生物耦合深度处理低 C/N 比生活污水的研究[D]. 北京: 北京交通大学, 2018.
[37] 张超, 刘玲花 . 铁基质强化新型功能性化粪池高效处理黑水的试验[J]. 中国环境科学, 2020, 40(6): 2435-2444.
[38] 白杨 . 铁碳微电解填料制备及其强化曝气生物滤池污水除磷研究[D]. 吉林: 东北电力大学, 2020.
[39] Hu Z, Li D, Liu Y, et al. Performance of chemical catalytic biofilm technology for decentralized sewage treatment[J]. Environmental Engineering Science, 2020, 37(11): 757-768.
[40] Guo T, Ji Y, Zhao J, et al. Coupling of Fe-C and aerobic granular sludge to treat refractory wastewater from a membrane manufacturer in a pilot-scale system[J]. Water Research, 2020, 186: 116331.
[41] Pan Z, Guo T, Sheng J, et al. Adding waste iron shavings in reactor to develop aerobic granular sludge and enhance removal of nitrogen and phosphorus[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106620.
[42] Chen L, Quan X, Gao Z, et al. A composite Fe-C/layered double oxides (Fe-C/LDO) carrier fabrication and application for enhanced removal of nitrate and phosphate from polluted water with a low carbon/nitrogen ratio[J]. Journal of Cleaner Production, 2022, 352: 131628.
[43] Terashima M, Yama A, Sato M, et al. Culture-dependent and-independent identification of polyphosphate-accumulating Dechloromonas spp. Predominating in a full-scale oxidation ditch wastewater treatment plant[J]. Microbes and Environments, 2016, 31(4): 449-455.
[44] Nielsen P H, McIlroy S J, Albertsen M, et al. Re-evaluating the microbiology of the enhanced biological phosphorus removal process[J]. Current Opinion in Biotechnology, 2019, 57: 111-118.
[45] 刘学燕, 侯琮语, 李德生, 等. 基于铁碳物化-生物耦合法的新型湿地填料研究[J]. 人民黄河, 2018, 40(11): 92-96.
[46] Deng S, Xie B, Kong Q, et al. An oxic/anoxic-integrated and Fe/C micro-electrolysis-mediated vertical constructed wetland for decentralized low-carbon greywater treatment[J]. Bioresource Technology, 2020, 315: 123802.
[47] Zheng X, Jin M, Zhou X, et al. Enhanced removal mechanism of iron carbon micro-electrolysis constructed wetland on C, N, and P in salty permitted effluent of wastewater treatment plant[J]. Science of the Total Environment, 2019, 649: 21-30.
[48] Ji B, Jiang M, Yang Y, et al. High treatment effectiveness for secondary effluent in Fe-C microelectrolysis constructed wetlands with electron donor supplementation[J]. Journal of Cleaner Production, 2022, 342: 130934.
[49] 刘霞, 马鲁铭, 魏宏斌, 等 . 催化铁内电解池后置处理废水的方法: CN1843982[P]. 2006-10-11.
[50] 李少林, 魏宏斌, 马鲁铭, 等 . 物化-生化-物化工艺处理精细化工废水的中试[J]. 中国给水排水, 2007(1): 92-96.
[51] 马嘉敏 . 基于微电解法的污水厂尾水深度除磷研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
Outlines

/