[1] Cowan C L, Reines F, Harrison F B, et al. Detection of the free neutrino: A confirmation[J]. Science, 1956, 124(3212): 103-104.
[2] Akimov D, Albert J B, An P, et al. Observation of coherent elastic neutrino-nucleus scattering[J]. Science, 2017, 357: 1123-1127.
[3] 王贻芳, 大亚湾反应堆中微子实验[J]. 物理, 2007, 36(3): 207-214.
[4] JUNO Collaboration. Status and prospects of the JUNO experiment[J]. Journal of Physics Conference Series, 2017, 888: 012022.
[5] Korovkin V A, Kodanev S A, Panashchenko N S, et al. Measuring nuclear plant power output by neutrino detection[J]. Atomic Energy, 1988, 65(3): 712-718.
[6] Klimov Y V, Kopeikin V I, Mikaélyan L A, et al. Neutrino method remote measurement of reactor power and output[J]. Atomic Energy, 1994, 76(2): 123-127.
[7] 孙亚轩, 曹俊, 陆锦标, 等. 反应堆中微子实验的基线优化[J]. 高能物理与核物理, 2005, 29(6): 543-548.
[8] 朱剑钰, 徐雪峰, 苏佳杭, 等. 反中微子监测反应堆运行的数值模拟[J]. 核技术, 2016, 39(3): 63-69.
[9] IAEA. Final report: Focused workshop on antineutrino detection for safeguards applications[R]. Vienna: IAEA Headquarters, 2008.
[10] 谢慈, 高俊, 柳超, 等. 中微子对潜艇通信研究[J]. 仪器仪表学报, 2006, 27(6): 2071-2074.
[11] 钟鸣. 中微子探测技术的发展及其军事应用前景[J]. 国防科技, 2019, 40(1): 5-9.
[12] MINERvA Collaboration. Demonstration of communication using neutrinos[J]. Modern Physics Letters A, 2012, 27: 1250077.
[13] 韩然, 习宇飞 . 地球中微子——把脉地球内部热量[J].现代物理知识, 2015, 27(6): 43-46.
[14] 韩然, 牛耀龄, 李玉峰, 等. 地球中微子: 来自地球深部的信使[J]. 科学通报, 2018, 63(27): 2853-2862.
[15] 何锦成, 韩然, 欧阳晓平. 基于江门地下中微子实验的地球中微子信号研究[J]. 航天器环境工程, 2018, 35(2): 158-164.
[16] 冒鑫, 韩然, 李玉峰. 地球中微子能谱计算及初步高阶修正[J]. 原子能科学技术, 2020, 54(8): 1345-1354.
[17] Carlo B, Giorgio G, Petr V. Reactor-based neutrino oscillation experiments[J]. Reviews of Modern Physics, 2002, 74: 297-328.
[18] Song Y P, Jing H T, Tang J Y, et al. Design study of pion and muon beam transport line for MOMENT[J]. Nuclear Instruments and Methods in Physics Research A, 2020, 950: 162907.
[19] Bowden N, Bernsteinb A, Allen M, et al. Experimental results from an antineutrino detector for cooperative monitoring of nuclear reactors[J]. Nuclear Instruments and Methods in Physics Research Section A, 2007, 572985-998.
[20] Joo K K. Status of the RENO reactor neutrino experiment[J]. Nuclear Physics B, 2012, 229-232: 97-100.
[21] Ko Y J, Kim B R, Kim J Y, et al. Sterile neutrino search at the NEOS experiment[J]. Physical Review Letters, 2017, 118: 121802.
[22] Kim Y. Detection of antineutrinos for reactor monitoring[J]. Nuclear Engineering and Technology, 2016, 48: 285-292.
[23] Kuroda Y, Oguri S, Kato Y, et al. A mobile antineutrino detector with plastic scintillators[J]. Nuclear Instruments and Methods in Physics Research A, 2012, 690: 41-47.
[24] Vogel P, Engel J. Neutrino electromagnetic form factors[J]. Physical Review D, 1989, 39(11): 3378-3383.
[25] Mueller T A, Lhuillier D, Fallot M, et al. Improved predictions of reactor antineutrino spectra[J]. Physical Review C, 2011, 83(5): 054615.
[26] Huber P. On the determination of antineutrino spectra from nuclear reactors[J]. Physical Review C, 2011, 84(2): 024617.
[27] Oguri S, Kuroda Y, Kato Y, et al. Reactor antineutrino monitoring with a plastic scintillator array as a new safeguards method[J]. Nuclear Instruments and Methods in Physics Research A, 2014, 757: 33-39.
[28] Lane C, Usman S M, Blackmon J, et al. A new type of neutrino detector for sterile neutrino search at nuclear reactors and nuclear nonproliferation applications[J]. arXiv Preprint, 2015, arXiv: 1501.06935.
[29] Alekseev I, Belov V, Brudanin V, et al. DANSS: Detector of the reactor AntiNeutrino based on solid scintillator[J]. Journal of Instrumentation, 2016, 11: P11011.
[30] Abreu Y, Amhis Y, Arnold L, et al. A novel segmented-scintillator antineutrino detector[J]. Journal of Instrumentation, 2017, 12: P04024.
[31] Carroll J, Coleman J, Lockwood M, et al. Monitoring reactor anti-neutrinos using a plastic scintillator detector in a mobile laboratory[J]. arXiv Preprint, 2018, arXiv: 1811.01006v1.
[32] Haghighat A, Huber P, Li S, et al. Observation of Reactor Antineutrinos with a rapidly deployable surface-level detector[J]. Physical Review Applied, 2020, 13: 034028.
[33] Blondel A, Bogomilov M, Bordoni S, et al. The SuperFGD prototype charged particle beam tests[J]. arXiv Preprint, 2020, arXiv: 2008.08861v2 .
[34] Freedman D Z, Schramm D N, Tubbs D L. The weak neutral current and its effects in stellar collapse[J]. Annual Review of Nuclear And Particle Science, 1977, 27: 167-207.
[35] Barbeau P S, Collar J I, Tench O. Large-mass ultralow noise germanium detectors: Performance and applications in neutrino and astroparticle physics[J]. Journal of Cosmology and Astroparticle Physics, 2007, 9(9): 1-7.
[36] Singh V, Wong H T. Recent results and status of TEXONO experiments[J]. arXiv Preprint, 2004, arXiv: nucl-ex/0412057v1.
[37] Singh M K, Sharma V, Singh L, et al. Background rejection of TEXONO experiment to explore the sub-keV energy region with HPGe detector[J]. Indian Journal of Physics, 2017, 91(10): 1-15.
[38] Abe K, Hiraide K, Ichimura K, et al. A measurement of the scintillation decay time constant of nuclear recoils in liquid xenon with the XMASS-I detector[J]. Journal of Instrumentation, 2018, 13: P12032.
[39] Abe K, Hiraide K, Ichimura K, et al. Improved search for two-neutrino double electron capture on 124Xe and 126Xe using particle identification in XMASS-I[J]. Progress of Theoretical and Experimental Physics, 2018, 053D03.
[40] Abe K, Chen Y, Hiraide K, et al. Search for exotic neutrino-electron interactions using solar neutrinos in XMASS-I[J]. Physics Letters B, 2020, 809(135741): 1-7.
[41] Agnolet G, Baker W, Barker D, et al. Background studies for the MINER coherent neutrino scattering reactor experiment[J]. Nuclear Instruments and Methods in Physics Research A, 2017, 853: 53-60.
[42] Hakenmüller J, Buck C, Fülber K, et al. Neutron-induced background in the CONUS experiment[J]. European Physical Journal C, 2019, 79(699): 1-27.
[43] Akimov D, An P, Awe C, et al. The COHERENT experiment at the spallation neutron source[J]. arXiv Preprint, 2016, arXiv: 1509.08702v2.
[44] Tayloe R. The CENNS-10 liquid argon detector to measure CEvNS at the Spallation Neutron Source[J]. Journal of Instrumentation, 2017, 13: C04005.
[45] Akimov D, Albert J B, An P, et al. Observation of coherent elastic neutrino-nucleus scattering[J]. Science, 357(6356): 1123-1126.
[46] Akimov D, Albert J B, An P, et al. First constraint on coherent elastic neutrino-nucleus scattering in argon[J]. Physical Review D, 2019, 100: 115020.
[47] Akimov D, An P, Awe C, et al. Sensitivity of the COHERENT experiment to accelerator-produced dark matter[J]. Physical Review D, 2020, 102: 052007.
[48] Fan X, Yang C W, Wang Z H, et al. Geant4 analysis and optimization of a double crystal phoswich detector for beta-gamma coincidence detection[J]. Nuclear Science and Techniques, 2018, 29(4): 59.
[49] Li X B, Wang Y D, Zhou R, et al. Energy calibration for plastic scintillation detectors based on Compton scatterings of gamma rays[J]. Journal of Instrumentation, 2017, 12: P12025.
[50] Wang Y D, Li X B, Yang C W, et al. Comparison of two spectrum-dose conversion methods based on NaI(Tl) scintillation detectors[J]. Journal of Instrumentation, 2018, 13: T06004.