Reviews

Progress in research of small neutrino detectors

  • HUANG Qianming ,
  • LI Lan ,
  • Lü Huanwen ,
  • YING Dongchuan
Expand
  • Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China

Received date: 2022-10-10

  Revised date: 2022-11-02

  Online published: 2023-06-29

Abstract

Small neutrino detectors have a wide range of application prospects in reactor monitoring, submarine detection and geophysics research. This paper summarizes the types of neutrinos and detection principles, followed by the development status of detection technologies at home and abroad, including experiments based on inverse beta decay and coherent scattering experiments of neutrinos. Finally, the development of small neutrino detectors is reviewed and differences between different countries and the future development of small neutrino detectors in China are also summarized.

Cite this article

HUANG Qianming , LI Lan , Lü Huanwen , YING Dongchuan . Progress in research of small neutrino detectors[J]. Science & Technology Review, 2023 , 41(11) : 105 -112 . DOI: 10.3981/j.issn.1000-7857.2023.11.011

References

[1] Cowan C L, Reines F, Harrison F B, et al. Detection of the free neutrino: A confirmation[J]. Science, 1956, 124(3212): 103-104.
[2] Akimov D, Albert J B, An P, et al. Observation of coherent elastic neutrino-nucleus scattering[J]. Science, 2017, 357: 1123-1127.
[3] 王贻芳, 大亚湾反应堆中微子实验[J]. 物理, 2007, 36(3): 207-214.
[4] JUNO Collaboration. Status and prospects of the JUNO experiment[J]. Journal of Physics Conference Series, 2017, 888: 012022.
[5] Korovkin V A, Kodanev S A, Panashchenko N S, et al. Measuring nuclear plant power output by neutrino detection[J]. Atomic Energy, 1988, 65(3): 712-718.
[6] Klimov Y V, Kopeikin V I, Mikaélyan L A, et al. Neutrino method remote measurement of reactor power and output[J]. Atomic Energy, 1994, 76(2): 123-127.
[7] 孙亚轩, 曹俊, 陆锦标, 等. 反应堆中微子实验的基线优化[J]. 高能物理与核物理, 2005, 29(6): 543-548.
[8] 朱剑钰, 徐雪峰, 苏佳杭, 等. 反中微子监测反应堆运行的数值模拟[J]. 核技术, 2016, 39(3): 63-69.
[9] IAEA. Final report: Focused workshop on antineutrino detection for safeguards applications[R]. Vienna: IAEA Headquarters, 2008.
[10] 谢慈, 高俊, 柳超, 等. 中微子对潜艇通信研究[J]. 仪器仪表学报, 2006, 27(6): 2071-2074.
[11] 钟鸣. 中微子探测技术的发展及其军事应用前景[J]. 国防科技, 2019, 40(1): 5-9.
[12] MINERvA Collaboration. Demonstration of communication using neutrinos[J]. Modern Physics Letters A, 2012, 27: 1250077.
[13] 韩然, 习宇飞 . 地球中微子——把脉地球内部热量[J].现代物理知识, 2015, 27(6): 43-46.
[14] 韩然, 牛耀龄, 李玉峰, 等. 地球中微子: 来自地球深部的信使[J]. 科学通报, 2018, 63(27): 2853-2862.
[15] 何锦成, 韩然, 欧阳晓平. 基于江门地下中微子实验的地球中微子信号研究[J]. 航天器环境工程, 2018, 35(2): 158-164.
[16] 冒鑫, 韩然, 李玉峰. 地球中微子能谱计算及初步高阶修正[J]. 原子能科学技术, 2020, 54(8): 1345-1354.
[17] Carlo B, Giorgio G, Petr V. Reactor-based neutrino oscillation experiments[J]. Reviews of Modern Physics, 2002, 74: 297-328.
[18] Song Y P, Jing H T, Tang J Y, et al. Design study of pion and muon beam transport line for MOMENT[J]. Nuclear Instruments and Methods in Physics Research A, 2020, 950: 162907.
[19] Bowden N, Bernsteinb A, Allen M, et al. Experimental results from an antineutrino detector for cooperative monitoring of nuclear reactors[J]. Nuclear Instruments and Methods in Physics Research Section A, 2007, 572985-998.
[20] Joo K K. Status of the RENO reactor neutrino experiment[J]. Nuclear Physics B, 2012, 229-232: 97-100.
[21] Ko Y J, Kim B R, Kim J Y, et al. Sterile neutrino search at the NEOS experiment[J]. Physical Review Letters, 2017, 118: 121802.
[22] Kim Y. Detection of antineutrinos for reactor monitoring[J]. Nuclear Engineering and Technology, 2016, 48: 285-292.
[23] Kuroda Y, Oguri S, Kato Y, et al. A mobile antineutrino detector with plastic scintillators[J]. Nuclear Instruments and Methods in Physics Research A, 2012, 690: 41-47.
[24] Vogel P, Engel J. Neutrino electromagnetic form factors[J]. Physical Review D, 1989, 39(11): 3378-3383.
[25] Mueller T A, Lhuillier D, Fallot M, et al. Improved predictions of reactor antineutrino spectra[J]. Physical Review C, 2011, 83(5): 054615.
[26] Huber P. On the determination of antineutrino spectra from nuclear reactors[J]. Physical Review C, 2011, 84(2): 024617.
[27] Oguri S, Kuroda Y, Kato Y, et al. Reactor antineutrino monitoring with a plastic scintillator array as a new safeguards method[J]. Nuclear Instruments and Methods in Physics Research A, 2014, 757: 33-39.
[28] Lane C, Usman S M, Blackmon J, et al. A new type of neutrino detector for sterile neutrino search at nuclear reactors and nuclear nonproliferation applications[J]. arXiv Preprint, 2015, arXiv: 1501.06935.
[29] Alekseev I, Belov V, Brudanin V, et al. DANSS: Detector of the reactor AntiNeutrino based on solid scintillator[J]. Journal of Instrumentation, 2016, 11: P11011.
[30] Abreu Y, Amhis Y, Arnold L, et al. A novel segmented-scintillator antineutrino detector[J]. Journal of Instrumentation, 2017, 12: P04024.
[31] Carroll J, Coleman J, Lockwood M, et al. Monitoring reactor anti-neutrinos using a plastic scintillator detector in a mobile laboratory[J]. arXiv Preprint, 2018, arXiv: 1811.01006v1.
[32] Haghighat A, Huber P, Li S, et al. Observation of Reactor Antineutrinos with a rapidly deployable surface-level detector[J]. Physical Review Applied, 2020, 13: 034028.
[33] Blondel A, Bogomilov M, Bordoni S, et al. The SuperFGD prototype charged particle beam tests[J]. arXiv Preprint, 2020, arXiv: 2008.08861v2 .
[34] Freedman D Z, Schramm D N, Tubbs D L. The weak neutral current and its effects in stellar collapse[J]. Annual Review of Nuclear And Particle Science, 1977, 27: 167-207.
[35] Barbeau P S, Collar J I, Tench O. Large-mass ultralow noise germanium detectors: Performance and applications in neutrino and astroparticle physics[J]. Journal of Cosmology and Astroparticle Physics, 2007, 9(9): 1-7.
[36] Singh V, Wong H T. Recent results and status of TEXONO experiments[J]. arXiv Preprint, 2004, arXiv: nucl-ex/0412057v1.
[37] Singh M K, Sharma V, Singh L, et al. Background rejection of TEXONO experiment to explore the sub-keV energy region with HPGe detector[J]. Indian Journal of Physics, 2017, 91(10): 1-15.
[38] Abe K, Hiraide K, Ichimura K, et al. A measurement of the scintillation decay time constant of nuclear recoils in liquid xenon with the XMASS-I detector[J]. Journal of Instrumentation, 2018, 13: P12032.
[39] Abe K, Hiraide K, Ichimura K, et al. Improved search for two-neutrino double electron capture on 124Xe and 126Xe using particle identification in XMASS-I[J]. Progress of Theoretical and Experimental Physics, 2018, 053D03.
[40] Abe K, Chen Y, Hiraide K, et al. Search for exotic neutrino-electron interactions using solar neutrinos in XMASS-I[J]. Physics Letters B, 2020, 809(135741): 1-7.
[41] Agnolet G, Baker W, Barker D, et al. Background studies for the MINER coherent neutrino scattering reactor experiment[J]. Nuclear Instruments and Methods in Physics Research A, 2017, 853: 53-60.
[42] Hakenmüller J, Buck C, Fülber K, et al. Neutron-induced background in the CONUS experiment[J]. European Physical Journal C, 2019, 79(699): 1-27.
[43] Akimov D, An P, Awe C, et al. The COHERENT experiment at the spallation neutron source[J]. arXiv Preprint, 2016, arXiv: 1509.08702v2.
[44] Tayloe R. The CENNS-10 liquid argon detector to measure CEvNS at the Spallation Neutron Source[J]. Journal of Instrumentation, 2017, 13: C04005.
[45] Akimov D, Albert J B, An P, et al. Observation of coherent elastic neutrino-nucleus scattering[J]. Science, 357(6356): 1123-1126.
[46] Akimov D, Albert J B, An P, et al. First constraint on coherent elastic neutrino-nucleus scattering in argon[J]. Physical Review D, 2019, 100: 115020.
[47] Akimov D, An P, Awe C, et al. Sensitivity of the COHERENT experiment to accelerator-produced dark matter[J]. Physical Review D, 2020, 102: 052007.
[48] Fan X, Yang C W, Wang Z H, et al. Geant4 analysis and optimization of a double crystal phoswich detector for beta-gamma coincidence detection[J]. Nuclear Science and Techniques, 2018, 29(4): 59.
[49] Li X B, Wang Y D, Zhou R, et al. Energy calibration for plastic scintillation detectors based on Compton scatterings of gamma rays[J]. Journal of Instrumentation, 2017, 12: P12025.
[50] Wang Y D, Li X B, Yang C W, et al. Comparison of two spectrum-dose conversion methods based on NaI(Tl) scintillation detectors[J]. Journal of Instrumentation, 2018, 13: T06004.
Outlines

/