Papers

On structure and difference of urban safety production risk based on industries

  • CHEN Ning ,
  • TANG Junmei ,
  • WANG Yao ,
  • CHEN An
Expand
  • 1. Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
    2. Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2022-03-23

  Revised date: 2022-06-15

  Online published: 2023-08-11

Abstract

Risk prevention and hidden danger identification are important to urban safety. According to current laws and regulations on safety production and emergency management in China, the responsible subjects of safety management are those departments that are directly involved in risks and hidden dangers. In a comprehensive city there are great differences in the types and distributions of potential risks among industries. These differences should be taken into account so that targeted risk prevention and control measures can be formulated accordingly. This paper studies the distribution differences of potential safety risks in industries, proposes a concept of industry safety risk structure, defines an industry safety risk vector, and gives the quantification indexes of industry risk entropy and risk specificity by means of information entropy theory. Based on the analysis results of tens of thousands of cases it is found that determination of safety risk vector, industry risk entropy, and risk specificity is conducive to the comparative study of safety risks within and between industries and provides a basis for the classified monitoring of industrial safety risks.

Cite this article

CHEN Ning , TANG Junmei , WANG Yao , CHEN An . On structure and difference of urban safety production risk based on industries[J]. Science & Technology Review, 2023 , 41(13) : 109 -117 . DOI: 10.3981/j.issn.1000-7857.2023.13.011

References

[1] 王国栋, 颜爱华, 侯蕊芳, 等. 城市安全风险评估方法体系研究及实践[J]. 中国安全生产科学技术, 2019, 15(7): 46-50.
[2] 安全科学技术词典编委会 . 安全科学技术词典[M]. 北京: 中国劳动出版社, 1991.
[3] 徐锐. 中小企业安全生产管制研究[D]. 镇江: 江苏大学, 2009.
[4] 曹海林, 童星.“十一五”期间江苏安全生产面临的潜在风险、主要特征及其防范对策[J]. 河海大学学报(哲学社会科学版), 2006, 8(3): 13-18.
[5] 谢红利 . 上海城市安全生产风险指数评价及治理研究[D]. 上海: 华东理工大学商学院, 2013.
[6] 张瓷 . 北京市S区城市安全风险评估研究[D]. 西安: 西安科技大学, 2020.
[7] 刘娜, 雷鸣 . 基于 SOM-PNN 神经网络的城市环境风险预测算法研究[J]. 计算机科学, 2019, 46(增刊1): 66-70.
[8] 杨舟. 基于神经网络的电气火灾时间序列预测模型研究[C]//消防科技与工程学术会议论文集 . 北京: 化学工业出版社, 2015: 15-18.
[9] 王祎, 田一梅, 单金林, 等 . 供水管网系统爆管预测[J].天津大学学报, 2010, 43(9): 840-843.
[10] 李金玲 . 基于关联规则的地铁基坑工程施工风险监测研究[D]. 天津: 天津理工大学, 2011.
[11] Xu C, Bao J, Wang C, et al. Association rule analysis of factors contributing to extraordinarily severe traffic crashes in China[J]. Journal of Safety Research, 2018, 67: 65-75.
[12] Castro Y, Kim Y. Data mining on road safety: Factor assessment on vehicle accidents using classification models[J]. International Journal of Crashworthiness, 2016, 21(2): 104-111.
[13] 鲁钰雯, 翟国方 . 人工智能技术在城市灾害风险管理中的应用与探索[J]. 国际城市规划, 2021, 36(2): 22-31.
[14] Kang H W, Kang H B. Urban safety prediction using context and object information via double-column convolutional neural network[C]//13th IEEE Conference on Computer and Robot Vision (CRV). Victoria, British Columbia: IEEE, 2016: 399-405.
[15] Kdm A, Aav A, Dn A. Urban events prediction via convolutional neural networks and Instagram data-science direct[J]. Procedia Computer Science, 2019, 156(C): 176-184.
[16] 裴喜华, 王恺, 陈勇, 等 . 基于固有风险初筛的城市安全风险评估方法及应用[J]. 工业安全与环保, 2021, 47(10): 27-30.
[17] 秦挺鑫, 徐凤娇, 王皖, 等 . 城市公共安全风险识别标准研究[J]. 标准科学, 2020(6): 13-18.
[18] 张超, 徐凤娇, 王皖, 等 . 城市安全风险评估标准中的关键问题研究[J]. 标准科学, 2021(7): 54-60.
[19] 王宇航, 杨乃莲, 任智刚, 等 . 风电行业安全生产风险特征与对策[J]. 中国安全生产科学技术, 2013, 9(8):156-160.
[20] 王轶苏 . 关于建立汽车维修行业安全生产风险分级管控体系工作初探[J]. 汽车维护与修理, 2021(23): 10-15.
[21] 张栋, 周晨静, 林建新. 交通运输行业安全运营风险影响谱系研究[J]. 交通工程, 2021, 21(4): 14-20.
[22] 赵浩, 李佳育 . 我国煤炭行业安全风险分析[J]. 煤炭经济研究, 2021, 41(5): 65-70.
[23] 周小兴. 风险结构问题研究[D]. 兰州: 兰州理工大学理学院, 2008.
[24] Wang M, Li D, Li T. A lung image classification method: A classifier constructed by combining improved vgg16 and gradient boosting decision tree[J]. Journal of Mechanics in Medicine and Biology, 2021, 21(4): 2150042.
[25] Liu Z, Jiang Z, Xu C, et al. Assessment of provincial waterlogging risk based on entropy weight TOPSIS-PCA method[J]. Natural Hazards, 2021: 1-23.
[26] 陈宁, 王尧 . 基于关联规则的企业安全风险并存分析研究[J]. 安全, 2021, 42(6): 41-45.
[27] 宗关忠, 程建棠, 吕光清 . 1998—2015 年国内外 60 起起重机械事故[J]. 工程机械与维修, 2016, 3(256): 80-83.
Outlines

/