Exclusive: Development Trends of Web 3.0

Progress of Blockchain related Technologies in the Web 3.0

  • SI Xueming ,
  • PAN Heng ,
  • LIU Jianmei ,
  • ZHU Weihua ,
  • YAO Zhongyuan
Expand
  • 1. Blockchain Research Center, Shanghai Jiao Tong University, Shanghai 200030, China
    2. Frontier Information Technology Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China

Received date: 2023-06-16

  Revised date: 2023-07-20

  Online published: 2023-08-30

Abstract

Blockchain is the key technology for Web 3.0 to build trusted interconnections and value interconnections. As a new decentralized infrastructure, the technology of blockchain is also constantly evolving. Combined with the background of Web 3.0, the technological progress and existing problems of blockchain are introduced in this paper, such as decentralized identity, smart contract, incentive mechanism, and privacy protection. They help to realize the technologies in Web 3.0, such as the data security sharing, business circulation and rights guarantee of users, so as to achieve the goal of more fair distribution and flow of the value.

Cite this article

SI Xueming , PAN Heng , LIU Jianmei , ZHU Weihua , YAO Zhongyuan . Progress of Blockchain related Technologies in the Web 3.0[J]. Science & Technology Review, 2023 , 41(15) : 36 -45 . DOI: 10.3981/j.issn.1000-7857.2023.15.004

References

[1] Lin Y J, Gao Z P, Du H Y, et al. A unified blockchain-semantic framework for wireless edge intelligence enabled Web 3.0[J]. arXiv Preprint, 2022: 2210.15130.
[2] O'Reilly T. What is Web 2.0: Design patterns and business models for the next generation of software[J]. International Journal of Digital Economic, 2007, 65(1): 17-37.
[3] Wood G. Dapps: what Web 3.0 looks like, Apr 2014[EB/OL]. [2023-05-20]. http://gavwood.com/dappsweb3.html.
[4] Hendler J. Web 3.0: The dawn of semantic search[J]. Computer, 2010, 43(1): 77-80.
[5] Zarrin J, Wen Phang H, Babu Saheer L, et al. Blockchain for decentralization of internet: Prospects, trends, and challenges[J]. Cluster Computing, 2021, 24(4): 2841-2866.
[6] Alabdulwahhab F A. Web 3.0: The decentralized web blockchain networks and protocol innovation[C]//2018 1st International Conference on Computer Applications & Information Security (ICCAIS). Piscataway, NJ: IEEE, 2018: 1-4.
[7] Avrilionis D, Hardjono T. From trade-only to zero-value NFTs: The asset proxy NFT paradigm in Web3[J]. arXiv Preprint, 2022: 2205.04899.
[8] Liu Z, Xiang Y, Shi J, et al. Make Web 3.0 connected[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 19(5): 2965-2981.
[9] Weyl E G, Ohlhaver P, Buterin V. Decentralized society: Finding Web3's soul[J]. Available at SSRN 4105763, 2022.
[10] Web3.0 前瞻研究报告(2022 年)[R/OL]. [2023-06-11]. http://www.trustedblockchain.cn#/result/result/resultDet-ail/2cc84f5277fe4e2689f42c947c18ebdd/0.
[11] Qin R, Ding W W, Li J J, et al. Web3-based decentralized autonomous organizations and operations: Architectures, models, and mechanisms[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 53(4): 2073-2082.
[12] Gilani K, Bertin E, Hatin J, et al. A survey on blockchain-based identity management and decentralized privacy for personal data[C]//2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS). Piscataway, NJ: IEEE, 2020: 97-101.
[13] Szalachowski P. Password-authenticated decentralized identities[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 4801-4810.
[14] Park C S, Nam H M. A new approach to constructing decentralized identifier for secure and flexible key rotation[J]. IEEE Internet of Things Journal, 2021, 9(13): 10610-10624.
[15] Alangot B, Szalachowski P, Dinh T T A, et al. Decentralized identity authentication with auditability and privacy[J]. Algorithms, 2022, 16(4): doi: 10.3390/a16010004.
[16] Huh S, Shim M, Lee J, et al. Did we miss anything? Towards privacy-preserving decentralized ID architecture[J]. IEEE Transactions on Dependable and Secure Computing, 2023(1): 1-18.
[17] Maram D, Malvai H, Zhang F, et al. Candid: Can-do decentralized identity with legacy compatibility, sybil-resistance, and accountability[C]//2021 IEEE Symposium on Security and Privacy (SP). Piscataway, NJ: IEEE, 2021: 1348-1366.
[18] 田潇, 杨国忠, 钟晓, 等 . 基于门限签名的预言机数据源评估激励机制研究[J]. 电子技术与软件工程, 2022(5): 248-252.
[19] 毕丹阳, 张钰雯, 毕雅晴. 基于预言机的可信数据上链技术[J]. 信息通信技术与政策, 2021, 47(9): 79-84.
[20] ChainLink white paper[EB/OL]. [2021-05-10]. https://link.sm artcontract.com/whitepaper.
[21] Dos network white paper [EB/OL]. [2021-05-10]. https://www.dos.network.
[22] 刘炜, 郭灵贝, 夏玉洁, 等 . 基于门限聚合签名的区块链预言机数据传输模型[J]. 郑州大学学报(理学版), 2023, 55(4): 23-29.
[23] 张晴晴, 田潇, 田锦, 等 . 基于区块链预言机的车联网可信身份方案研究[J]. 信息安全研究, 2023, 9(2): 120-126.
[24] 管哿浠, 马兆丰, 叶可可, 等 . 基于预言机和零知识证明的区块链数据上链方案[J]. 信息安全与通信保密, 2022(10): 25-37.
[25] 董伟良, 刘哲, 刘逵, 等 . 智能合约漏洞检测技术综述[EB/OL]. [2023-06-11]. http://www.jos.org.cn/1000-982-5/6810.htm.
[26] Kolluri A, Nikolic I, Sergey I, et al. Exploiting the laws of order in smart contracts[C]//Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: Association for Computing Machinery, 2019: 363-373.
[27] Zhang Q, Wang Y, Li J, et al. Ethploit: From fuzzing to efficient exploit generation against smart contracts[C]//2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER). Piscataway, NJ: IEEE, 2020: 116-126.
[28] Schwartz E J, Avgerinos T, Brumley D. All you ever wanted to know about dynamic taint analysis and forward symbolic execution (but might have been afraid to ask)[C]//2010 IEEE Symposium on Security and Privacy. Piscataway, NJ: IEEE, 2010: 317-331.
[29] Coward P D. Symbolic execution systems: A review[J]. Software Engineering Journal, 1988, 3(6): 229-239.
[30] Hu R, Gong Y. Trading data for learning: Incentive mechanism for on-device federated learning[C]//GLOBECOM 2020-2020 IEEE Global Communications Conference. Piscataway, NJ: IEEE, 2020: 1-6.
[31] Lyu L, Yu J, Nandakumar K, et al. Towards fair and privacy-preserving federated deep models[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(11): 2524-2541.
[32] Song T, Tong Y, Wei S. Profit allocation for federated learning[C]//2019 IEEE International Conference on Big Data (Big Data). Piscataway, NJ: IEEE, 2019: 2577-2586.
[33] Yan X, Ng W W Y, Zeng B, et al. P2 SIM: Privacy-preserving and source-reliable incentive mechanism for mobile crowdsensing[J]. IEEE Internet of Things Journal, 2022, 9(24): 25424-25437.
[34] Xie L, Luan T H, Su Z, et al. A game-theoretical approach for secure crowdsourcing-based indoor navigation system with reputation mechanism[J]. IEEE Internet of Things Journal, 2021, 9(7): 5524-5536.
[35] Liang X, Yan Z, Kantola R. GAIMMO: A grade-driven auction-based incentive mechanism with multiple objectives for crowdsourcing managed by blockchain[J]. IEEE Internet of Things Journal, 2022, 9(18): 17488-17502.
[36] Goldwasser S, Micali S, Rackoff C. The knowledge complexity of interactive proof-systems[J]. SIAM Journal on Computing, 1989, 18(1): 186-208.
[37] Miers I, Garman C, Green M, et al. Zerocoin: Anonymous distributed E-Cash from Bitcoin[C]//IEEE. 2013 IEEE Symposium on Security and Privacy. Piscataway, NJ: IEEE, 2013: 397-411.
[38] Xing Z B, Zhang Z J, Li M, et al. Zero-knowledge proof-based practical federated learning on blockchain[J]. arXiv Preprint, 2023: 2304.05354.
[39] Gluchowski A. Zk rollup: Scaling with zero-knowledge proofs[EB/OL]. [2023-06-11]. https://pandax-statics.oss-cn-shenzhen. aliyuncs. com/statics/1221233526992813. pdf.
[40] Bonneau J, Meckler I, Rao V, et al. Coda: Decentralized cryptocurrency at scale[J]. Cryptology ePrint Archive, 2020. https: //eprint.iacr.org/2020/352.
[41] Chang X, Luo X, Xu G C, et al. ZkRouter: 无信任、通用跨链基础设施 [EB/OL]. [2023-05-24]. https://drive.google.com/file/d/1lijlXhSE0jayn2PoR6ZHgsuAdHrrg36_/view.
[42] 杨敏, 徐长通, 夏喆, 等 . 一种高效且可监管的隐私交易方案[J]. 武汉大学学报(理学版), 2023, 69(1): 39-50.
[43] 杨亚涛, 刘德莉, 刘培鹤, 等 . BFV-Blockchainvoting:支持 BFV 全同态加密的区块链电子投票系统[J]. 通信学报, 2022, 43(9): 100-111.
[44] 李文卿, 马锐, 张文涛. 基于共用密钥的高效多密钥同态加密方案研究[J]. 计算机工程与科学, 2023, 45(2): 252-260.
[45] 张学旺, 张豪, 姚亚宁, 等 . 基于群签名和同态加密的联盟链隐私保护方案[J]. 信息网络安全, 2023, 23(3): 56-61.
[46] Fang H, Qian Q. Privacy preserving machine learning with homomorphic encryption and federated learning[EB/OL]. [2023-06-11]. http://dx.doi.org/10.3390/fi13040094. doi:10.3390/fi13040094.
[47] Zhou J, Feng Y, Wang Z, et al. Using secure multi-party computation to protect privacy on a permissioned blockchain[J]. Sensors, 2021, 21(4): 1540.
[48] Wei K, Li J, Ding M, et al. Federated learning with differential privacy: Algorithms and performance analysis[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3454-3469.
[49] Wu N, Farokhi F, Smith D, et al. The value of collaboration in convex machine learning with differential privacy[C]//2020 IEEE Symposium on Security and Privacy(SP). Piscataway, NJ: IEEE, 2020: 304-317.
[50] Dwork C, Kenthapadi K, McSherry F, et al. Our data, ourselves: Privacy via distributed noise generation[C]//Advances in Cryptology-EUROCRYPT 2006: 24th Annual International Conference on the Theory and Applications of Cryptographic Technique. Berlin Heidelberg: Springer, 2006: 486-503.
[51] Zhou J, Feng Y, Wang Z, et al. Using secure multi-party computation to protect privacy on a permissioned blockchain[J]. Sensors, 2021, 21(4): 1540.
[52] Qin Z, Yu T, Yang Y, et al. Generating synthetic decentralized social graphs with local differential privacy[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. NewYork: Association for Computing Machinery, 2017: 425-438.
[53] Sun H, Xiao X, Khalil I, et al. Analyzing subgraph statis⁃tics from extended local views with decentralized differential privacy[C]//Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. New York: Association for Computing Machinery, 2019: 703-717.
[54] Sabt M, Achemlal M, Bouabdallah A. Trusted execution environment: What it is, and what it is not[C]//2015 IEEE Trustcom/BigDataSE/Ispa. Piscataway, NJ: IEEE, 2015, 1: 57-64.
[55] Lind J, Eyal I, Kelbert F, et al. Teechain: Scalable blockchain payments using trusted execution environments[J]. arXiv Preprint, 2017: 1707.05454, 2017.
[56] KELEKET GOMA Christy Junior Yannick, 易文哲, 王鹃 . 一种基于 SGX 的轻量 Fabric 链码可信执行环境构建方法[J]. 信息网络安全, 2022, 22(7): 73-83.
[57] Desai H, Kantarcioglu M. SECAUCTEE: Securing auction smart contracts using trusted execution environments[C]//2021 IEEE International Conference on Blockchain(Blockchain). Piscataway, NJ: IEEE, 2021: 448-455.
[58] 李明煜, 夏虞斌, 陈海波 . 面向 SGX2 代新型可信执行环境的内存优化系统[J]. 软件学报, 2022, 33(6): 2012-2029.
[59] Zhou Z, Tian Y, Xiong J, et al. Blockchain-enabled secure and trusted federated data sharing in IIoT[J]. IEEE Transactions on Industrial Informatics, 2023, 19(5): 6669-6681.
[60] Chen B, Zeng H, Xiang T, et al. ESB-FL: Efficient and secure blockchain-based federated learning with fair payment[J]. IEEE Transactions on Big Data, 2022, doi: 10.1109/TBDATA.2022.3177170.
[61] Mothukuri V, Parizi R M, Pouriyeh S, et al. FabricFL: Blockchain-in-the-Loop federated learning for trusted decentralized systems[J]. IEEE Systems Journal, 2022, 16(3): 3711-3722.
[62] Wang N Y, Yang W T, Wang X D, et al. A blockchain based privacy-preserving federated learning scheme for Internet of vehicles[EB/OL]. [2023-06-11]. https://www. sciencedirect.com/science/article/pii/S23528648220011-34.
[63] Alzubi J A, Alzubi O A, Singh A, et al. Cloud-IIoT-based electronic health record privacy-preserving by CNN and blockchain-enabled federated learning[J]. IEEE Transactions on Industrial Informatics, 2022, 19(1): 1080-1087.
[64] Du R Z, Ma C X, Li M Y. Privacy-preserving searchable encryption scheme based on public and private blockchains[J]. Tsinghua Science and Technology, 2022, 28(1): 13-26.
[65] Li J C, Meng Y, Ma L C, et al. A federated learning based privacy-preserving smart healthcare system[J]. IEEE Transactions on Industrial Informatics, 2022, 18(3): 2021-2031.
Outlines

/