[1] 骆宏伟, 胡德源 . 国内聚乙烯燃气管专用料的开发现状及市场[J]. 化工管理, 2021(12): 1-2.
[2] Lai H S, Fan D S, Jia Y F, et al. Key Technical challenges of high density polyethylene(HDPE) pipe in nuclear equipment[J]. Pressure Vessel Technology, 2017, 34(12): 45-54.
[3] Mehdizadeh-Kafash M. Deformation and fracture behaviour of high-density polyethylene pipe materials: experimental and numerical approach[D]. Lille: École Doctorale Sciences Pour L'ingénieur, 2009.
[4] 唐捷 . 塑料内胆复合材料全缠绕 CNG 气瓶安全技术研究[D]. 成都: 四川大学, 2005.
[5] 侯向陶, 许忠斌, 顾云柱 . 塑料管道失效分析及寿命预测的研究进展[J]. 中国塑料, 2014, 28(7): 11-16.
[6] 赵兴民, 赵建平, 燕集中 . 高密度聚乙烯管材光氧老化性能及寿命预测[J]. 中国塑料, 2021, 35(6): 33-39.
[7] Costa L, Luda M P, Trossarelli L. Ulra-high molecular weight polyethylene—II. Thermal-and photo-oxidation[J]. Polymer Degradation & Stability, 1997, 58(1/2): 41-54.
[8] 王洋. 城镇燃气聚乙烯管道热氧老化寿命预测方法研究[D]. 北京: 北京交通大学, 2019.
[9] 王志刚, 杨波, 曾辰, 等. 高温内压环境下聚乙烯燃气管道老化性能评价研究[J]. 中国塑料, 2022, 36(10): 84-89.
[10] 代星辰, 黄奕昶, 关凯书. 基于压痕测试技术的聚乙烯老化力学性能评价[J]. 机械工程材料, 2023,47(1):106-110.
[11] 白晓涓, 杨梦欢, 肖星星, 等 . 加工对一些塑料添加剂影响的研究[J]. 合成材料老化与应用, 2013, 42(6): 1-4.
[12] 冯敬 . 塑料抗老化助剂的应用[J]. 化工新型材料,2014, 42(7): 235-239.
[13] 彭向阳 . 应用显微红外法的硅橡胶复合绝缘子伞裙老化深度研究[J]. 电网技术, 2017, 41(4): 1350-1356.
[14] Zhao B, Guo J, Yu Y X, et al. A Study on small punch test to characterize mechanical property of aged high-density polyethylene (HDPE)[J]. Key Engineering Materials, 2017, 734: 104-115.
[15] 何嘉平, 杨波, 向健平, 等 . 聚乙烯管材 SCG 性能评价及寿命预测论述[J]. 塑料, 2020, 49(1): 152-155.
[16] 吕志勇, 尹应乐, 陆杰, 等 . 高透紫外硬质硅橡胶的制备及其性能研究[C]. 2015年全国高分子学术论文报告会论文摘要集——主题J 高性能高分子, 2015: 130.
[17] 杨军忠, 刘伟, 景振华, 等 . HDPE/LDPE 复合交联物的热降解研究[J]. 塑料工业, 2006, 34(7): 43-46.
[18] 夏超 . 尼龙 66 无氧热降解交联行为的研究[D]. 上海:东华大学, 2017.
[19] 代军, 晏华, 郭骏骏, 等 . 结晶度对高密度聚乙烯热氧老化特性的影响[J]. 高分子材料科学与工程, 2016, 32(9): 65-71.
[20] 代军, 晏华, 郭骏骏, 等 . 低密度聚乙烯热氧老化行为及老化动力学[J]. 塑料, 2017, 46(1): 121-124.
[21] 揭敢新, 郭燕芬, 陶友季, 等. 湿热、干热自然老化中水分对聚碳酸酯老化行为的影响[J]. 塑料, 2014, 43(1): 71-74.
[22] 甘润德 . 工程塑料老化与防老化概述[J]. 兵工塑料, 1974(1): 33-44.
[23] 曹绪龙, 祝仰文, 韩玉贵, 等 . 聚合物分子结构与老化稳定性关系研究[J]. 石油与天然气化工, 2016, 45(2): 58-61.
[24] G·W·埃伦斯坦 . 聚合物材料: 结构·性能·应用[M]. 北京: 化学工业出版社, 2007.
[25] 高苏闽, 刘亚涛, Benjamin H S, 等. 分子量分布及短支链结构对 HDPE 剪切诱导结晶的影响[J]. 上海塑料, 2018(1): 53-58.
[26] 杨素, 杨苏平, 陈枫, 等 . 聚乙烯短支链与其结晶度关系的定量研究[J]. 现代塑料加工应用, 2006, 18(2): 33-35.
[27] 代军, 晏华, 郭骏骏, 等 . 结晶度对聚乙烯热氧老化特性的影响[J]. 材料研究学报, 2017, 31(1): 41-48.
[28] 王爱东, 杨霄云, 于海鸥, 等 . 耐热氧老化聚丙烯复合物: CN102408630A[P]. 2012-04-11.
[29] 郭依帛, 强晔 . 城镇聚乙烯燃气管道失效风险源分析[J]. 中国特种设备安全, 2022, 38(5): 47-51.
[30] 建设部 . 城镇燃气设计规范: GB 500282006[S]. 北京: 中国建设工业出版社, 2006.
[31] Brown N, Lu X. A fundamental theory for slow crack growth in polyethylene[J]. Polymer, 1995, 36(3): 543-548.
[32] Frank A, Freimann W, Pinter G, et al. A fracture mechanics concept for the accelerated characterization of creep crack growth in PE-HD pipe grades[J]. Engineering Fracture Mechanics, 2009, 76(18): 2780-2787.
[33] Jiang H, Zhang J W, Yang Z R, et al. Modeling of competition between shear yielding and crazing in amorphous polymers' scratch[J]. International Journal of Solids & Structures, 2017, 124: 215-228.
[34] 戴连奇, 彭雄, 吴亦建, 等 . 塑料的弹性体增韧及其影响因素[J]. 塑料工业, 2017, 45(9): 24-27.
[35] 李孝三, 漆宗能 . 聚乙烯管材的开裂动力学与机理[J].高分子通报, 1992(4): 218-227.
[36] 董孝理 . 聚乙烯耐蠕变开裂的断裂力学实验方法与聚合物长时标开裂试验装置[J]. 塑料工业, 1997, 25(6): 98-100.
[37] Ivashchuk A D. Modeling of plastic zones in the process of shear deformation of a half layer containing a crack[J]. Materials Science, 2003, 39(6): 788-795.
[38] Li Xiao, Zhao Bo, Yu Yuxin, et al. Investigation on constitutive and ductile damage mechanism of high-density polyethylene under tensile and bending conditions[J]. Journal of Pipeline Systems Engineering and Practice, 2023, 14(2): 1-10.
[39] Zhao B, Zhang S, Sun C, et al. Aging behaviour and properties evaluation of high-density polyethylene(HDPE) in heating-oxygen environment[J]. IOP Conference Series Materials Science and Engineering, 2018, 369: 012021.
[40] 胡平, Tomit Y. 高分子材料平面应变拉伸变形局部化[J]. 力学学报, 1996, 28(5): 564-574.
[41] 李凯, 叶天宇, 王记增 . 受约束高分子链的拉伸[J]. 应用数学和力学, 2021, 42(10): 1008-1023.
[42] Reis J, Pacheco L J, Mattos H C. Influence of the temperature and strain rate on the tensile behavior of post-consumer recycled high-density polyethylene[J]. Polymer Testing, 2013, 32(8): 1576-1581.
[43] Balobanov V, Verho T, Heino V, et al. Micromechanical performance of high-density polyethylene: Experimental and modeling approaches for HDPE and its alumina-nanocomposites[J]. Polymer Testing, 2020, 93: 106936.
[44] Narayan S, Anand L. Fracture of amorphous polymers: A gradient-damage theory[J]. Journal of the Mechanics and Physics of Solids, 2021, 146: 104164.
[45] Pawlak A, Galeski A, Rozanski A. Cavitation during deformation of semicrystalline polymers[J]. Progress in Polymer Science, 2013, 39(5): 921-958.
[46] Jiang H, Zhang J W, Yang Z R, et al. Modeling of competition between shear yielding and crazing in amorphous polymers' scratch[J]. International Journal of Solids & Structures, 2017, 124: 215-228.
[47] Shojaei A K, Volgers P. A coupled hyperelastic-plastic-continuum damage model for studying cyclic behavior of unfilled engineering polymers[J]. International Journal of Fatigue, 2018, 107: 33-39.
[48] Narayan S, Anand L. Fracture of amorphous polymers: A gradient-damage theory[J]. Journal of the Mechanics and Physics of Solids, 2021, 146: 104164.
[49] Du X , Zhang J , Liu Y . Plastic failure analysis of defective pipes with creep damage under multi-loading systems[J]. International Journal of Mechanical Science, 2017, 128-129: 428-444.
[50] Choi B H, Weinhold J, Reuschle D, et al. Modeling of the fracture mechanism of HDPE subjected to environmental stress crack resistance test[J]. Polymer Engineering and Science, 2009, 49(11): 2085-2091.
[51] Samuels R J. Structured polymer properties—The identification and application of crystalline polymer structure[J]. Journal of Polymer Science: Polymer Letters Edition, 1975, 13(1): 61-62.
[52] Krishnaswamy R K, Lamborn M J, Sukhadia A M, et al. Rapid crack propagation failures in HDPE pipes: Structure—property investigations[J]. Polymer Engineering & Science, 2010, 46(10): 1358-1362.
[53] Mirsayar M M, Hartl D J. Damage detection via embedded sensory particles—Effect of particle/matrix interphase properties[J]. Composite Structures, 2020, 232: 111536.
[54] Lu D, Yu W. Correlation analysis between acoustic emission signal parameters and fracture stress of wool fiber[J]. Textile Research Journal, 2019, 89(21/22): 4568-4580.
[55] Chelliah S K, Parameswaran P, Ramasamy S, et al. Optimization of acoustic emission parameters to discriminate failure modes in glass-epoxy composite laminates using pattern recognition[J]. Structural Health Monitoring, 2019, 18(4): 1253-1267.
[56] Zhao W J, Lee J, Kim H, et al. Semi-empirical investigation of the interfacial shear strength of short fiber polymer composites[J]. Polymer Testing, 2019, 74: 99-103.
[57] Wang X, Zhang H P, Xiong Y. Classification and identification of damage mechanisms in polyethylene self-reinforced laminates by acoustic emission technique[J]. Polymer Composites, 2011, 32(6): 945-959.
[58] Carvelli V, D'Ettorre A, Lomov S V. Acoustic emission and damage mode correlation in textile reinforced PPS composites[J]. Composite Structures, 2017, 163(3): 399-409.
[59] Yuan Y L, Shen G T, Zhang J J, et al. Experiment research on tensile process of type IV gas cylinder liner-HDPE based on acoustic emission[M]//Advances in Acoustic Emission Technology. Singapore: Springer, 2021: 281-295.