Papers

Axial force inversion method of deepwater jacket platform based on digital twin method

  • ZHANG Yanfang ,
  • CHENG Congzhi ,
  • ZHOU Lei ,
  • WANG Weiwei ,
  • YU Siyuan ,
  • WU Wenhua ,
  • LIU Lei ,
  • ZHU Dongxu
Expand
  • 1. Offshore Oil Engineering Co., Ltd., Tianjin 300451, China
    2. State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
    3. Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024, China
    4. Dalian Kingmile Anticorrosion Technology Co.,Ltd., Dalian 116024, China

Received date: 2023-03-04

  Revised date: 2023-06-30

  Online published: 2023-08-30

Abstract

Deepwater jacket platform has found wide application in the South China Sea. Real-time and accurate acquisition of the forcing state of concerned members of the deepwater jacket platform can assess the safety status of the platform in service. Using the digital twinning methodology, this paper presents an axial force inversion method of deepwater jacket platform and carries out field verification on the LF 15-1 platform which is the largest jacket in Asia. Firstly, a digital twinning framework is established through an on-field monitoring system. Then, based on SACS simulation database and sea state interpolation algorithm, a procedure to calculate the axial force of concerned member under monitoring is developed. Finally, feasibility of the algorithm is verified on the LF 15-1 deepwater jacket platform with the prototype of monitored sea state data. The research results can provide reference for operation and maintenance of deepwater jacket platforms.

Cite this article

ZHANG Yanfang , CHENG Congzhi , ZHOU Lei , WANG Weiwei , YU Siyuan , WU Wenhua , LIU Lei , ZHU Dongxu . Axial force inversion method of deepwater jacket platform based on digital twin method[J]. Science & Technology Review, 2023 , 41(15) : 97 -105 . DOI: 10.3981/j.issn.1000-7857.2023.15.010

References

[1] 谭越, 李新仲, 王春升. 深水导管架平台技术研究[J]. 中国海洋平台, 2016, 31(1): 17-22.
[2] 张煜, 冯永训 . 海洋油气田开发工程概论[M]. 北京: 中国石化出版社, 2011.
[3] 余建星 . 深海油气工程[M]. 天津: 天津大学出版社, 2010.
[4] 邱炜, 崔广亮, 于文太, 等 . 300m 级超大型深水导管架装船关键技术研究[J]. 中国石油和化工标准与质量, 2022, 42(11): 196-198.
[5] 修宗祥. 深水导管架海洋平台安全可靠性分析及优化设计[D]. 东营: 中国石油大学(华东), 2010.
[6] 陶飞, 刘蔚然, 刘检华, 等 . 数字孪生及其应用探索[J].计算机集成制造系统, 2018, 24(1): 1-18.
[7] 陆文发, 李林普, 高明道. 近海导管架平台[M]. 北京: 海洋出版社, 1992.
[8] Grieves M. Virtually perfect: Driving innovative and lean products through product lifecycle management[M]. Cocoa Beach: Space Coast Press, 2011.
[9] Negri E, Fumagalli L, Cimino C, et al. FMU-supported simulation for CPS digital twin[J]. Procedia Manufacturing, 2019, 28: 201-206.
[10] 庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统, 2017, 23(4): 753-768.
[11] 彭宇, 刘大同 . 数据驱动故障预测和健康管理综述[J]. 仪器仪表学报, 2014, 35(3): 481-495.
[12] 罗岚, 周崇尧, 胡琼, 等 . 深海采矿动态数字孪生系统开发[J]. 哈尔滨工程大学学报, 2023, 44(2): 197-203.
[13] 张侨禹, 宋汉江, 李良才, 等 . 基于数字孪生的舰船动力系统智能运维技术[J]. 中国舰船研究, 2022, 17(增刊1): 73-80.
[14] 常进云 . 基于数字孪生的 SYMS 铰节点健康管理研究[D]. 大连: 大连理工大学, 2021.
[15] Environmental conditions and environmental loads: DNV-RP-C205[S]. Oslo: DNV, 2017.
[16] 刘光孟, 汪云甲, 王允. 反距离权重插值因子对插值误差影响分析[J]. 中国科技论文在线, 2010, 5(11): 879-884.
Outlines

/