The core tool to realize agricultural power lies in scientific and technological innovation. Seed industry, as the "chip" of agriculture, technology and equipment innovation of crop seed industry is the primary driving force to build agricultural power. Based on the analysis of the practical demand for the innovation and development of seed industry technology and equipment to achieve the goal of agricultural power, this paper deeply summarized and analyzed the effect and trend of the development of crop seed industry technology and equipment. At present, the innovation level of science and technology and equipment of crop seed industry in our country has stepped into a new stage of following and leading. However, anchoring the goal of agricultural power, there is still a big gap between the development of science and technology and equipment of crop seed industry in our country and the realization of scientific and technological self-reliance and self-control of seed source, and the steady improvement of the ability to guarantee grain and important agricultural products. There are some weaknesses in the protection and utilization of germplasm resources, basic research of biological breeding, research and development of cutting-edge breeding core technology, research and development of advanced and applicable breeding equipment, and independent innovation of seed industry enterprises. Therefore, it is necessary to comprehensively promote the innovation and development of science, technology and equipment of seed industry from five dimensions, namely speeding up the construction of a new type of seed industry innovation system, promoting the open sharing, protection and utilization of germplasm resources, overcoming the key core technology of seed industry, strengthening the research and development and application innovation of seed industry equipment, and carrying out the policy experiment of seed industry innovation, so as to lay a solid foundation for the construction of an agricultural power.
[1] 中国科学院文献情报中心现代农业科技情报团队, 中国科学院成都文献情报中心生物科技情报团队, 杨艳萍, 等. 趋势观察: 国际现代农业与工业生物技术领域发展态势与热点[J]. 中国科学院院刊, 2021, 36(7): 864-867.
[2] 郑怀国, 赵静娟, 秦晓婧, 等. 全球作物种业发展概况及对我国种业发展的战略思考[J]. 中国工程科学, 2021, 23(4): 45-55.
[3] 高群, 徐意 . 新发展格局下种业发展国际经验及对中国的启示[J]. 世界农业, 2023(4): 14-23.
[4] 余志刚, 宫思羽 . 新发展格局下实现种业科技自立自强的瓶颈及其破解[J]. 中州学刊, 2023(2): 37-45.
[5] 蒋和平, 蒋黎, 王有年, 等. 国家粮食安全视角下我国种业发展的思路与政策建议[J]. 新疆师范大学学报(哲学社会科学版), 2022, 43(4): 77-88.
[6] 程郁, 叶兴庆, 宁夏, 等. 中国实现种业科技自立自强面临的主要“卡点”与政策思路[J]. 中国农村经济, 2022(8): 35-51.
[7] 魏珣, 孙康泰, 刘宏波, 等.“十三五”国家重点研发计划“七大农作物育种”重点专项管理经验与科技创新进展[J]. 中国农业科技导报, 2021, 23(11): 1-6.
[8] 刘旭, 李立会, 黎裕, 等. 作物种质资源研究回顾与发展趋势[J]. 农学学报, 2018, 8(1): 1-6.
[9] 陈丽娟 . 玉米优异种质资源规模化发掘与创新利用[J].中国种业, 2021(12): 6.
[10] Yu X Y, Zhao Z G, Zheng X M, et al. A selfish genetic element confers non-Mendelian inheritance in rice[J]. Science, 2018, 360: 1130-1132.
[11] Jiao Y Q, Wang Y H, Xue D W, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics, 2010, 42(6): 541-544.
[12] Wei S B, Li X, Lu Z F, et al. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice[J]. Science, 2022, 377(6604): eabi8455.
[13] Deng Y W, Zhai K R, Xie Z, et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance[J]. Science, 2017, 355(6328): eaai8898.
[14] Chen S J, Xu K, Kong D Y, et al. Ubiquitin ligase OsRINGzf1 regulates drought resistance by controlling the turnover of OsPIP2;1[J]. Plant Biotechnol J, 2022, 20(9): 1743-1755.
[15] Liu Y Q, Wang H R, Jiang Z M, et al. Genomic basis of geographical adaptation to soil nitrogen in rice[J]. Nature, 2021(590): 600-605.
[16] Zhai K R, Liang D L, Li H L, et al. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity[J]. Nature, 2022, 601(7892): 245-251.
[17] Gao M J, He Y, Wang G L, et al. Ca2+ sensor-mediated ROS scavenging suppresses rice immunity and is exploited by a fungal effector[J]. Cell, 2021, 184(21): 1-14.
[18] Wu K, Wang S S, Song W Z, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice[J]. Science, 2020, 367(6478): eaaz2046.
[19] Huang Y C, Wang H H, Zhu Y D, et al. THP9 enhances seed protein content and nitrogen-use efficiency in maize[J]. Nature, 2022, 612(7939): 292-300.
[20] Wang B B, Hou M, Shi J P, et al. De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis[J]. Nature Genetics, 2023(55): 312-323.
[21] Wang H W, Sun S L, Ge W Y, et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat[J]. Science, 2020, 368(6493): eaba5435.
[22] Wang N, Tang C L, Fan X, et al.Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi[J]. Cell, 2022, 185(16): 2961-2974.
[23] Nadeem M, Chen A D, Hong H L, et al. GmMs1 encodes a kinesin-like protein essential for male fertility in soybean (Glycine max L.) [J]. Journal of Integrative Plant Biology, 2021, 63(6): 1054-1064.
[24] Zhuang Y B, Wang X T, Li X T, et al. Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition[J]. Nature. Plants, 2022(8): 233-244.
[25] 中国农村技术开发中心 . 突破种业关键核心技术, 七大农作物育种迈上新台阶[J]. 中国农村科技, 2021(6): 8-13.
[26] 张文. 加快生物育种研发应用 推进农业科技自立自强[J]. 中国农业科技导报, 2022, 24(12): 8-14.
[27] 杨晓红, 周晋峰, 冯璐. 中国野生稻种质资源利用与保护[J]. 中国稻米, 2023, 29(1): 1-8.
[28] 孔令博, 林巧, 聂迎利, 等 . 中国农作物种业发展现状及对策分析[J]. 中国农业科技导报, 2023, 25(4):1-13.
[29] 王平. 我国种业发展的主要问题及对策探析[J]. 中国农业科技导报, 2021, 23(11): 7-16.
[30] 农业农村部种业管理司 . 2021年中国农作物种业发展报告[M]. 北京: 中国农业科学技术出版社, 2022.
[31] 仇焕广,张祎彤, 苏柳方, 等 . 打好种业翻身仗: 中国种业发展的困境与选择[J]. 农业经济问题, 2022(8): 67-78.