[1] Bennett J A, Klironomos J. Mechanisms of plant-soil feedback: Interactions among biotic and abiotic drivers[J]. New Phytologist, 2019, 222(1): 91-96.
[2] 周阳, 姜丽丽, 李博文, 等 . 植物-土壤反馈研究进展[J].广西植物, 2017, 37(11): 1480-1488.
[3] 张利, 邱松, 刘建霞, 等 . 植物根际土壤生态研究进展[J]. 四川农业科技, 2021(7): 39-40.
[4] Bennett J A, Maherali H, Reinhart K O, et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics[J]. Science, 2017, 355(6321): 181-184.
[5] 罗文泊, 王雪 . 植物-土壤反馈影响植物生长机理研究进展[J]. 环境生态学, 2022, 4(9): 25-31.
[6] Semchenko M, Leff J W, Lozano Y M, et al. Fungal diversity regulates plant-soil feedbacks in temperate grassland[J]. Science Advances, 2018, 4(11): eaau4578.
[7] 周新刚, 马海鲲, 郭辉, 等 . 植物-土壤反馈理论及其在连作障碍管理中的应用[J]. 科技导报, 2022, 40(3): 32-40.
[8] 杨珍, 戴传超, 王兴祥, 等. 作物土传真菌病害发生的根际微生物机制研究进展[J]. 土壤学报, 2019(1): 117.
[9] 周冰谦, 赵恒强, 王晓, 等. 不同连作年限山地丹参根际土壤细菌群落结构变化及其多样性分析[J]. 中华中医药杂志, 2019, 34(9): 3980-3985.
[10] 刘伟, 周冰谦, 王晓, 等. 基于ITS序列的丹参连作根际土壤真菌群落组成及多样性分析[J]. 中国实验方剂学杂志, 2019, 25(9): 130-135.
[11] 焦焕然, 孟缘, 周冰谦, 等 . 连作丹参根际土壤化感物质鉴定及化感效应研究[J]. 中药材, 2022, 45(7): 1538-1544.
[12] Liu Q, Cheng L, Nian H, et al. Linking plant functional genes to rhizosphere microbes: A review[J]. Plant Biotechnol Journal, 2023, 21(5): 902-917.
[13] 葛艺, 徐绍辉, 徐艳. 根际微生物组构建的影响因素研究进展[J]. 浙江农业学报, 2019, 31(12): 2120-2130.
[14] 王小平, 肖肖, 唐天文, 等 . 连香树人工林根系分泌物输入季节性变化及其驱动的根际微生物特性研究[J].植物研究, 2018, 38(1): 47-55.
[15] Lebeis S L, Paredes S H, Lundberg D S, et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa[J]. American Association for the Advancement of Science, 2015, 349(6250): 860-864.
[16] Huang A C, Jiang T, Liu Y X, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J]. Science, 2019, 364(6440): 546-546.
[17] 孙海航, 李建宁, 李蕾, 等 . 生物炭对三七连作地土壤微生物碳源代谢功能的影响[J]. 中成药, 2022, 44(8): 2559-2563.
[18] 李翟, 姜大成, 肖春萍, 等. 木霉菌的分离、鉴定及对人参根系分泌物的趋化性响应[J]. 中药材, 2022, 45(1): 32-36.
[19] 安宁波 . 人参根系分泌物中糖和氨基酸对其主要病害趋化性研究[D]. 吉林: 吉林农业大学, 2017.
[20] Voges M, Yang B, Schulze-Lefert P, et al. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome[J]. National Academy of Sciences, 2019, 116(25): 12558.
[21] 张贺, 何依依, 吴家庆, 等 . 玉米根系分泌物中关键抑菌物质对大豆疫霉的抑菌活性[J]. 植物保护, 2019, 45(6): 124-130.
[22] 包丽琼 . 丹参酮类化合物调控丹参根微生物组的研究[D]. 南京: 南京中医药大学, 2021.
[23] Zhang B, Weaton L A, Li M J, et al. Rehmanniag lutinosa replant issues: Root exudate-rhizobiome interactions clearly influence replant success[J]. Frontiers in Microbiology, 2020, 11: 1413.
[24] 鲁燕妮 . 土壤水分胁迫对西洋参生理指标影响及转录组的分析[D]. 泰安: 山东农业大学, 2022.
[25] 刘晓凤, 严武平, 曹诗佳, 等 . 连作对广藿香根际土壤理化性状和土壤酶活性的影响[J/OL]. 分子植物育种, 2022, 1-14[2023-01-06]. http://kns. cnki. net/kcms/detail/46.1068.S.20221008.1835.022.html.
[26] 王礼科, 罗夫来, 王华磊, 等 . 半夏不同连作年限土壤酶活性、微生物及化感物质的分析[J]. 中药材, 2021, 44(4): 798-801.
[27] 孙海, 梁浩, 张亚玉. 药用植物根形态建成低磷响应策略及其分子机制[J].中国中药杂志, 2022, 47(24): 6573-6580.
[28] 蔡银美, 赵庆霞, 张成富. 低磷下植物根系分泌物对土壤磷转化的影响研究进展[J]. 东北农业大学学报, 2021, 52(2): 79-86.
[29] Shukla D, Waigel S, Rouchka E C, et al. Genome-wide expression analysis reveals contrasting regulation of phosphate starvation response (PSR) in root and shoot of Arabidopsis and its association with biotic stress[J]. Environmental and experimental botany, 2021, 188: 104483.
[30] Na X F, Ma S L, Ma C X, et al. Lycium barbarum L(goji berry)monocropping causes microbial diversity loss and
induces Fusarium spp. enrichment at distinct soil layers[J]. Applied Soil Ecology, 2021, 168: 104107.
[31] 李艳鹏 . 铜绿假单胞菌 DN1参与石油烃降解基因功能及趋化性研究[D]. 西安: 西北大学, 2019.
[32] Zhalnina K, Louie K B, Hao Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature microbiology, 2018, 3(4): 470-480.
[33] 冯静 . 连作丹参根际土壤邻苯二甲酸与立枯丝核菌相互作用及其协同致害机理研究[D]. 济南: 山东中医药大学, 2020.
[34] Castrillo G, Teixeira P J P L, Paredes S H, et al. Root microbiota drive direct integration of phosphate stress and immunity[J]. Nature, 2017, 543(7646): 513-518.
[35] Wang Y, Xu X, Liu T, et al. Analysis of bacterial and fungal communities in continuous-cropping ramie(Boehmeria nivea L.Gaud)fields in different areas in China[J]. Scientific Reports, 2020, 10(1): 3264..
[36] 袁仁文, 刘琳, 张蕊, 等 . 植物根际分泌物与土壤微生物互作关系的机制研究进展[J]. 中国农学通报, 2020, 36(2): 26-35.
[37] 邢起铭, 金文杰, 周利斌, 等 . 植物根际促生菌提高植物耐盐性的研究进展[J]. 中国农学通报, 2022, 38(11): 46-52.
[38] 于春雷, 高嵩, 孙文松. 连作对辽细辛土壤理化性质和根际微生物群落特征的影响[J]. 江苏农业科学, 2022, 50(14): 250-258.
[39] Zhu S Y, Wang Y Z, Xu X M, et al. Potential use of high-throughput sequencing of soil microbial communitiesfor estimating the adverse effects of continuous cropping on ramie(Boehmeria nivea L. Gaud) [J]. Plos One, 2018, 13(5): e0197095.
[40] Zhang J G, Fan S H, Qin J, et al. Changes in the microbiome in the soil of an american ginseng continuous plantation[J]. Frontiers in Plant Science, 2020, 11: 572199.
[41] 李崇玮 . 不同恢复年限西洋参老参地土壤微生态环境变化及连作障碍机制探究[D]. 烟台: 鲁东大学, 2021.
[42] 周涛 . 黄连连作障碍修复菌剂的制备与应用研究[D].重庆: 西南大学, 2021.
[43] 刘云露 . 黄连土壤微生物多样性及其酚酸降解菌筛选与降解机制[D]. 重庆: 西南大学, 2019.
[44] 杨焱 . 微生物肥料对黄芪连作障碍的缓解作用[D]. 杨凌: 西北农林科技大学, 2022.
[45] 董林林, 牛玮浩, 王瑞, 等 . 人参根际真菌群落多样性及组成的变化[J]. 中国中药杂志, 2017, 42(3): 443-449.
[46] Wang B Y, Xia Q, Li Y L, et al. Root rot-infected Sanqi ginseng rhizosphere harbors dynamically pathogenic microbiotas driven by the shift of phenolic acids[J]. Plant and Soil, 2021, 465: 385-402.
[47] 徐周洋 . 人参根系分泌物对其病原菌的化学趋向性的影响及人参属植物种子种苗的化感作用研究[D]. 吉林: 吉林农业大学药学院, 2021.
[48] Jin X, Wu F F, Zhou X G. Different toxic effects of ferulic and p-hydroxybenzoic acids on cucumberseedling growth were related to their different influences on rhizosphere microbial composition[J]. Biology and Fertility of Soils, 2020, 56: 125-136.
[49] Hontoria C, Garcia-Gonzalez I, Quemade M, et al. The cover crop determines the AMF community composition in soil and in roots of maize after a ten-year continuous crop rotation[J]. Science of the Total Environment, 2019, 660(10): 913-922.
[50] 崔建波 . 土壤微环境对延胡索连作障碍发生机制研究[D]. 重庆: 重庆三峡学院, 2022.
[51] Shu F X, Han J, Ndayambaje J P, et al. Transcriptomic analysis of Pinellia ternata (Thunb.) Breit T2 plus line provides insights in host responses resist Pectobacterium carotovorum infection[J]. Bioengineered, 2021, 12(1): 1173-1188.
[52] He Z, Chen H, Liang L, et al. Alteration of crop rotation in continuous Pinellia ternata cropping soils profiled via fungal ITS amplicon sequencing[J]. Letter Apply Microbioloy, 2019, 68(6): 522-529.
[53] 赵源, 邓蓉, 黄钧. 半夏连作障碍成因及防治研究进展[J]. 应用与环境生物学报, 2022, 28(4): 1102-1108.
[54] He Z G, Mao R J, Dong J E, et al. Remediation of deterioration in microbial structure in continuous Pinellia ternata cropping soil by crop rotation[J]. Canadian Journal of Microbiology, 2018, 65(4): 282-295.
[55] 张一鸣, 刘芳君, 杨莉, 等 . 人参根际土壤甲醇提取物对人参病原真菌和拮抗菌的影响[J]. 吉林农业大学学报, 2014, 36(4): 436-441.
[56] 刘垠霖. 连作年限对党参生长、土壤理化性状及酶活性的影响研究[D]. 兰州: 甘肃农业大学, 2021.
[57] 李安优 . 太子参连作根腐病发病生理生化及微生态机制[D]. 贵阳: 贵州大学, 2017.
[58] Wu H M, Wu H M, Qin X J, et al. Replanting disease alters the faunal community composition and diversity in the rhizosphere soil of Radix pseudostellariae[J]. Agriculture, Ecosystems & Environment, 2021, 310: 107304.
[59] Wu L K, Wang J Y, Huang W M, et al. Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture[J]. Scientific Reports, 2015, 5: 15871.
[60] Li Z F, He C L, Wang Y, et al. Enhancement of trichothecene mycotoxins of Fusarium oxysporum by ferulic acid aggravates oxidative damage in Rehmannia glutinosa Libosch[J]. Scientific Reports, 2016, 6: 33962.
[61] 王潇然, 王玉红, 李炜玺, 等 . 响应地黄连作障碍 LncRNA-RgAGT2 的克隆及表达分析[J]. 中国中药杂志, 2019, 44(4): 703-711.
[62] 张进强, 唐鑫, 郭兰萍, 等 . 天麻连作障碍与土赤壳属真菌的关联分析及改善措施[J]. 中国中药杂志, 2022, 47(9): 2296-2303.