[1] Fan F R, Tian Z Q, Wang Z L. Flexible triboelectric generator[J]. Nano Energy, 2012, 1(2): 328-334.
[2] Lin Z M, Zhang B B, Guo H Y, et al. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy[J]. Nano Energy, 2019, 64: 103908.
[3] Shi B, Liu Z, Zheng Q, et al. Body-integrated self-powered system for wearable and implantable applications[J]. ACS Nano, 2019, 13(5): 6017-6024.
[4] Liu W, Wang Z, Hu C. Advanced designs for output improvement of triboelectric nanogenerator system[J]. Materials Today, 2021, 45: 93-119.
[5] Wang Z L. Triboelectric nanogenerator (TENG)—Sparking an energy and sensor revolution[J]. Advanced Energy Materials, 2020, 10(17): 2000137.
[6] Wang Z, Liu W, He W, et al. Ultrahigh electricity generation from low-frequency mechanical energy by efficient energy management[J]. Joule, 2021, 5(2): 441-55.
[7] Jin T, Sun Z, Li L, et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications[J]. Nature Communications, 2020, 11(1): 5381.
[8] Liu J, Zhou L, Gao Y, et al. Achieving ultra‐high voltage (≈10 kV) triboelectric nanogenerators[J]. Advanced Energy Materials, 2023, 13(21): 2300410.
[9] Khan U, Kim S W. Triboelectric nanogenerators for blue energy harvesting[J]. ACS Nano, 2016, 10(7): 6429-6432.
[10] Chen B, Wang Z L. Toward a new era of sustainable energy: Advanced triboelectric nanogenerator for harvesting high entropy energy[J]. Small, 2022, 18(43): e2107034.
[11] Jiang F, Thangavel G, Zhou X, et al. Ferroelectric modulation in flexible lead-free perovskite schottky directcurrent nanogenerator for capsule-like magnetic suspension sensor[J]. Advanced Materials, 2023: e2302815.
[12] Jin H, Yoon S G, Lee W H, et al. Identification of water-infiltration-induced electrical energy generation by ionovoltaic effect in porous CuO nanowire films[J]. Energy & Environmental Science, 2020, 13(10): 3432-3438.
[13] Xu W, Zheng H, Liu Y, et al. A droplet-based electricity generator with high instantaneous power density[J]. Nature, 2020, 578(7795): 392-396.
[14] Zhang Q, Liang Q, Nandakumar D K, et al. Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean[J]. Nature Communications, 2021, 12(1): 616.
[15] Wang Z L, Wang A C. On the origin of contact-electrification[J]. Materials Today, 2019, 30: 34-51.
[16] Lin S, Chen X, Wang Z L. Contact electrification at the liquid-solid interface[J]. Chemical Reviews, 2021, 122 (5): 5209-5232.
[17] Zhou Y S, Wang S, Yang Y, et al. Manipulating nanoscale contact electrification by an applied electric field [J]. Nano Letters, 2014, 14(3): 1567-1572.
[18] Lin S, Xu L, Xu C, et al. Electron transfer in nanoscale contact electrification: Effect of temperature in the metal-dielectric case[J]. Advanced Materials, 2019, 31(17): e1808197.
[19] Xu C, Zi Y, Wang A C, et al. On the electron-transfer mechanism in the contact-electrification effect[J]. Advanced Materials, 2018, 30(15): e1706790.
[20] Zhou Y S, Liu Y, Zhu G, et al. In situ quantitative study of nanoscale triboelectrification and patterning[J]. Nano Letters, 2013, 13(6): 2771-2776.
[21] Willatzen M, Wang Z L. Theory of contact electrification: Optical transitions in two-level systems[J]. Nano Energy, 2018, 52: 517-523.
[22] Lin S, Xu L, Chi Wang A, et al. Quantifying electrontransfer in liquid-solid contact electrification and the formation of electric double-layer[J]. Nature Communications, 2020, 11(1): 399.
[23] Wang Z, Berbille A, Feng Y, et al. Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders[J]. Nature Communications, 2022, 13(1): 130.
[24] Li D, Xu C, Liao Y, et al. Interface inter-atomic electron-transition induced photon emission in contact-electrification[J]. Science Advances, 2021, 7(39): eabj0349.
[25] Zhang Z, Jiang D, Zhao J, et al. Tribovoltaic effect on metal-semiconductor interface for direct‐current low‐impedance triboelectric nanogenerators[J]. Advanced Energy Materials, 2020, 10(9): 1903713.
[26] Meng J, Guo Z H, Pan C X, et al. Flexible textile directcurrent generator based on the tribovoltaic effect at dynamic metal-semiconducting polymer interfaces[J]. ACS Energy Letters, 2021, 6(7): 2442-2450.
[27] Xu R, Zhang Q, Wang J Y, et al. Direct current triboelectric cell by sliding an n-type semiconductor on a ptype semiconductor[J]. Nano Energy, 2019, 66: 104185.
[28] Lin S Q, Chen X Y, Wang Z L. The tribovoltaic effect and electron transfer at a liquid-semiconductor interface [J]. Nano Energy, 2020, 76: 105070.
[29] Meng J, Pan C X, Li L W, et al. Durable flexible direct current generation through the tribovoltaic effect in contact-separation mode[J]. Energy & Environmental Science, 2022, 15(12): 5159-5167.
[30] Wang Z Z, Zhang Z, Chen Y K, et al. Achieving an ultrahigh direct-current voltage of 130 V by semiconductor heterojunction power generation based on the tribovoltaic effect[J]. Energy & Environmental Science, 2022, 15(6): 2366-2373.
[31] Wang Z L. On Maxwell's displacement current for energy and sensors: The origin of nanogenerators[J]. Materials Today, 2017, 20(2): 74-82.
[32] Wang Z L. On the first principle theory of nanogenerators from Maxwell's equations[J]. Nano Energy, 2020, 68: 104272.
[33] Wang Z L. On the expanded Maxwell's equations for moving charged media system-General theory, mathematical solutions and applications in TENG[J]. Materials Today, 2022, 52: 348-363.
[34] Wang Z L. Maxwell's equations for a mechano-driven, shape-deformable, charged-media system, slowly moving at an arbitrary velocity field v(r, t) [J]. Journal of Physics Communications, 2022, 6(8): 085013.
[35] Wang Z L. The expanded Maxwell's equations for a mechano-driven media system that moves with acceleration[J]. International Journal of Modern Physics B, 2023, 37(16): 2350159.
[36] Wang J, Wu C, Dai Y, et al. Achieving ultrahigh triboelectric charge density for efficient energy harvesting[J]. Nature Communications, 2017, 8: 88.
[37] Zou H, Zhang Y, Guo L, et al. Quantifying the triboelectric series[J]. Nature Communications, 2019, 10: 1427.
[38] Liu D, Zhou L, Cui S, et al. Standardized measurement of dielectric materials' in trinsic triboelectric charge density through the suppression of air breakdown[J]. Nature Communications, 2022, 13: 6019.
[39] Liu Z, Huang Y, Shi Y, et al. Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density[J]. Nature Communications, 2022, 13: 4083.
[40] Yang P, Shi Y, Tao X, et al. Radical anion transfer during contact electrification and its compensation for charge loss in triboelectric nanogenerator[J]. Matter, 2023, 6: 1295-1311.
[41] Xu L, Bu T Z, Yang X D, et al. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators[J]. Nano Energy, 2018, 49: 625-633.
[42] Cheng L, Xu Q, Zheng Y, et al. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed[J]. Nature Communications, 2018, 9: 3773.
[43] Liu W, Wang Z, Wang G, et al. Integrated charge excitation triboelectric nanogenerator[J]. Nature Communications, 2019, 10: 1426.
[44] Li Y, Zhao Z, Liu L, et al. Improved output performance of triboelectric nanogenerator by fast accumulation process of surface charges[J]. Advanced Energy Materials, 2021, 11: 2100050.
[45] Wu H, He W, Shan C, et al. Achieving remarkable charge density via self-polarization of polar high-k material in charge-excitation triboelectric nanogenerator[J]. Advanced Materials, 2022, 34: 2109918.
[46] Wu H, Wang J, He W, et al. Ultrahigh output charge density achieved by charge trapping failure of dielectric polymers[J]. Energy & Environmental Science, 2023, 16: 2274-2283.
[47] Liu D, Yin X, Guo H, et al. A constant current triboelectric nanogenerator arising from electrostatic breakdown [J]. Science Advances, 2019, 5: eaav6437.
[48] Zhao Z, Dai Y, Liu D, et al. Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density[J]. Nature Communications, 2020, 11: 6186.
[49] Zhao Z, Zhou L, Li S, et al. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator[J]. Nature Communications, 2021, 12: 4686.
[50] Dai K, Liu D, Yin Y, et al. Transient physical modeling and comprehensive optimal design of air-breakdown direct-current triboelectric nanogenerators[J]. Nano Energy, 2022, 92: 106742.
[51] Zhang J, Gao Y, Liu D, et al. Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator[J]. Nature Communications, 2023, 14: 3218.
[52] Shan C, He W, Wu H, et al. A high-performance bidirectional direct current teng by triboelectrification of two dielectrics and local corona discharge[J]. Advanced Energy Materials, 2022, 12: 2200963.
[53] Zeng Q, Chen A, Zhang X, et al. A dual-functional triboelectric nanogenerator based on the comprehensive integration and synergetic utilization of triboelectrification, electrostatic induction, and electrostatic discharge to achieve alternating current/direct current convertible outputs[J]. Advanced Materials, 2023, 35: 2208139.
[54] Gao Y, Liu D, Li Y, et al. Achieving high-efficiency triboelectric nanogenerators by suppressing the electrostatic breakdown effect[J]. Energy & Environmental Science, 2023, 16(5): 2304-2315.
[55] Ouyang H, Liu Z, Li N, et al. Symbiotic cardiac pacemaker[J]. Nature Communications, 2019, 10: 1821.
[56] Hinchet R, Yoon H J, Ryu H, et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology[J]. Science, 2019, 365: 491-494.
[57] Wang J, Li S, Yi F, et al. Sustainably powering wearable electronics solely by biomechanical energy[J]. Nature Communications, 2016, 7: 12744.
[58] Hu Y, Li X, Gao Y, et al. A noncontact constant-voltage triboelectric nanogenerator via charge excitation[J]. ACS Energy Letters, 2023, 8: 2066-2076.
[59] Zhou L, Liu L, Qiao W, et al. Improving degradation efficiency of organic pollutants through a self-powered alternating current electrocoagulation system[J]. ACS Nano, 2021, 15: 19684-19691.
[60] Han J, Feng Y, Chen P, et al. Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming [J]. Advanced Functional Materials, 2022, 32: 2108580.
[61] Xia X, Zhou Z, Shang Y, et al. Metallic glass-based triboelectric nanogenerators[J]. Nature Communications, 2023, 14: 1023.
[62] Zu L, Wen J, Wang S, et al. Multiangle, self-powered sensor array for monitoring head impacts[J]. Science Advances, 2023, 9: eadg5152.
[63] Xu Z, Cao L N Y, Li C, et al. Digital mapping of surface turbulence status and aerodynamic stall on wings of a flying aircraft[J]. Nature Communications, 2023, 14: 2792.
[64] Pang H, Feng Y, An J, et al. Segmented swing-structured fur-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications[J]. Advanced Functional Materials, 2021, 31: 2106398.
[65] Qiu H, Wang H, Xu L, et al. Brownian motor inspired monodirectional continuous spinning triboelectric nanogenerators for extracting energy from irregular gentle water waves[J]. Energy & Environmental Science, 2023, 16: 473-483.
[66] Zhang C, He L, Zhou L, et al. Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy[J]. Joule, 2021, 5: 1613-1623.
[67] Li X, Xu L, Lin P, et al. Three-dimensional chiral networks of triboelectric nanogenerators inspired by metamaterial's structure[J]. Energy & Environmental Science, 2023, doi: 10.1039/D3EE01035J.
[68] Liang X, Liu S, Lin S, et al. Liquid-solid triboelectric nanogenerator arrays based on dynamic electric-doublelayer for harvesting water wave energy[J]. Advanced Energy Materials, 2023, 13: 2300571.
[69] Lei R, Shi Y, Ding Y, et al. Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy[J]. Energy & Environmental Science, 2020, 13: 2178-2190.
[70] Guo H, Chen J, Wang L, et al. A highly efficient triboelectric negative air ion generator[J]. Nature Sustainability, 2021, 4: 147-153.
[71] Li X, Luo J, Han K, et al. Stimulation of ambient energy generated electric field on crop plant growth[J]. Nature Food, 2022, 3: 133-142.