Innovation leads selfreliance and selfimprovement—creating a source of high-quality technological

Foundamental research and technological innovation of triboelectric nanogenerators

  • PU Xiong ,
  • WANG Jie ,
  • WANG Zhonglin
Expand
  • Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China

Received date: 2023-07-20

  Revised date: 2023-09-07

  Online published: 2023-10-27

Abstract

Triboelectric nanogenerator (TENG) has become an emerging platform technology for achieving mechano-electrical energy conversion, with huge application potentials in a variety of fields. For the past decade, through extensive efforts, significant progress on the research of TENG has been made worldwide, including both fundamental scientific research and application technology of TENGs. Therefore, this article aims to review the representative achievements of TENGs in fundamental findings and technological innovations and look forward to the faster development of TENGs.

Cite this article

PU Xiong , WANG Jie , WANG Zhonglin . Foundamental research and technological innovation of triboelectric nanogenerators[J]. Science & Technology Review, 2023 , 41(19) : 29 -42 . DOI: 10.3981/j.issn.1000-7857.2023.19.003

References

[1] Fan F R, Tian Z Q, Wang Z L. Flexible triboelectric generator[J]. Nano Energy, 2012, 1(2): 328-334.
[2] Lin Z M, Zhang B B, Guo H Y, et al. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy[J]. Nano Energy, 2019, 64: 103908.
[3] Shi B, Liu Z, Zheng Q, et al. Body-integrated self-powered system for wearable and implantable applications[J]. ACS Nano, 2019, 13(5): 6017-6024.
[4] Liu W, Wang Z, Hu C. Advanced designs for output improvement of triboelectric nanogenerator system[J]. Materials Today, 2021, 45: 93-119.
[5] Wang Z L. Triboelectric nanogenerator (TENG)—Sparking an energy and sensor revolution[J]. Advanced Energy Materials, 2020, 10(17): 2000137.
[6] Wang Z, Liu W, He W, et al. Ultrahigh electricity generation from low-frequency mechanical energy by efficient energy management[J]. Joule, 2021, 5(2): 441-55.
[7] Jin T, Sun Z, Li L, et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications[J]. Nature Communications, 2020, 11(1): 5381.
[8] Liu J, Zhou L, Gao Y, et al. Achieving ultra‐high voltage (≈10 kV) triboelectric nanogenerators[J]. Advanced Energy Materials, 2023, 13(21): 2300410.
[9] Khan U, Kim S W. Triboelectric nanogenerators for blue energy harvesting[J]. ACS Nano, 2016, 10(7): 6429-6432.
[10] Chen B, Wang Z L. Toward a new era of sustainable energy: Advanced triboelectric nanogenerator for harvesting high entropy energy[J]. Small, 2022, 18(43): e2107034.
[11] Jiang F, Thangavel G, Zhou X, et al. Ferroelectric modulation in flexible lead-free perovskite schottky directcurrent nanogenerator for capsule-like magnetic suspension sensor[J]. Advanced Materials, 2023: e2302815.
[12] Jin H, Yoon S G, Lee W H, et al. Identification of water-infiltration-induced electrical energy generation by ionovoltaic effect in porous CuO nanowire films[J]. Energy & Environmental Science, 2020, 13(10): 3432-3438.
[13] Xu W, Zheng H, Liu Y, et al. A droplet-based electricity generator with high instantaneous power density[J]. Nature, 2020, 578(7795): 392-396.
[14] Zhang Q, Liang Q, Nandakumar D K, et al. Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean[J]. Nature Communications, 2021, 12(1): 616.
[15] Wang Z L, Wang A C. On the origin of contact-electrification[J]. Materials Today, 2019, 30: 34-51.
[16] Lin S, Chen X, Wang Z L. Contact electrification at the liquid-solid interface[J]. Chemical Reviews, 2021, 122 (5): 5209-5232.
[17] Zhou Y S, Wang S, Yang Y, et al. Manipulating nanoscale contact electrification by an applied electric field [J]. Nano Letters, 2014, 14(3): 1567-1572.
[18] Lin S, Xu L, Xu C, et al. Electron transfer in nanoscale contact electrification: Effect of temperature in the metal-dielectric case[J]. Advanced Materials, 2019, 31(17): e1808197.
[19] Xu C, Zi Y, Wang A C, et al. On the electron-transfer mechanism in the contact-electrification effect[J]. Advanced Materials, 2018, 30(15): e1706790.
[20] Zhou Y S, Liu Y, Zhu G, et al. In situ quantitative study of nanoscale triboelectrification and patterning[J]. Nano Letters, 2013, 13(6): 2771-2776.
[21] Willatzen M, Wang Z L. Theory of contact electrification: Optical transitions in two-level systems[J]. Nano Energy, 2018, 52: 517-523.
[22] Lin S, Xu L, Chi Wang A, et al. Quantifying electrontransfer in liquid-solid contact electrification and the formation of electric double-layer[J]. Nature Communications, 2020, 11(1): 399.
[23] Wang Z, Berbille A, Feng Y, et al. Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders[J]. Nature Communications, 2022, 13(1): 130.
[24] Li D, Xu C, Liao Y, et al. Interface inter-atomic electron-transition induced photon emission in contact-electrification[J]. Science Advances, 2021, 7(39): eabj0349.
[25] Zhang Z, Jiang D, Zhao J, et al. Tribovoltaic effect on metal-semiconductor interface for direct‐current low‐impedance triboelectric nanogenerators[J]. Advanced Energy Materials, 2020, 10(9): 1903713.
[26] Meng J, Guo Z H, Pan C X, et al. Flexible textile directcurrent generator based on the tribovoltaic effect at dynamic metal-semiconducting polymer interfaces[J]. ACS Energy Letters, 2021, 6(7): 2442-2450.
[27] Xu R, Zhang Q, Wang J Y, et al. Direct current triboelectric cell by sliding an n-type semiconductor on a ptype semiconductor[J]. Nano Energy, 2019, 66: 104185.
[28] Lin S Q, Chen X Y, Wang Z L. The tribovoltaic effect and electron transfer at a liquid-semiconductor interface [J]. Nano Energy, 2020, 76: 105070.
[29] Meng J, Pan C X, Li L W, et al. Durable flexible direct current generation through the tribovoltaic effect in contact-separation mode[J]. Energy & Environmental Science, 2022, 15(12): 5159-5167.
[30] Wang Z Z, Zhang Z, Chen Y K, et al. Achieving an ultrahigh direct-current voltage of 130 V by semiconductor heterojunction power generation based on the tribovoltaic effect[J]. Energy & Environmental Science, 2022, 15(6): 2366-2373.
[31] Wang Z L. On Maxwell's displacement current for energy and sensors: The origin of nanogenerators[J]. Materials Today, 2017, 20(2): 74-82.
[32] Wang Z L. On the first principle theory of nanogenerators from Maxwell's equations[J]. Nano Energy, 2020, 68: 104272.
[33] Wang Z L. On the expanded Maxwell's equations for moving charged media system-General theory, mathematical solutions and applications in TENG[J]. Materials Today, 2022, 52: 348-363.
[34] Wang Z L. Maxwell's equations for a mechano-driven, shape-deformable, charged-media system, slowly moving at an arbitrary velocity field v(r, t) [J]. Journal of Physics Communications, 2022, 6(8): 085013.
[35] Wang Z L. The expanded Maxwell's equations for a mechano-driven media system that moves with acceleration[J]. International Journal of Modern Physics B, 2023, 37(16): 2350159.
[36] Wang J, Wu C, Dai Y, et al. Achieving ultrahigh triboelectric charge density for efficient energy harvesting[J]. Nature Communications, 2017, 8: 88.
[37] Zou H, Zhang Y, Guo L, et al. Quantifying the triboelectric series[J]. Nature Communications, 2019, 10: 1427.
[38] Liu D, Zhou L, Cui S, et al. Standardized measurement of dielectric materials' in trinsic triboelectric charge density through the suppression of air breakdown[J]. Nature Communications, 2022, 13: 6019.
[39] Liu Z, Huang Y, Shi Y, et al. Fabrication of triboelectric polymer films via repeated rheological forging for ultrahigh surface charge density[J]. Nature Communications, 2022, 13: 4083.
[40] Yang P, Shi Y, Tao X, et al. Radical anion transfer during contact electrification and its compensation for charge loss in triboelectric nanogenerator[J]. Matter, 2023, 6: 1295-1311.
[41] Xu L, Bu T Z, Yang X D, et al. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators[J]. Nano Energy, 2018, 49: 625-633.
[42] Cheng L, Xu Q, Zheng Y, et al. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed[J]. Nature Communications, 2018, 9: 3773.
[43] Liu W, Wang Z, Wang G, et al. Integrated charge excitation triboelectric nanogenerator[J]. Nature Communications, 2019, 10: 1426.
[44] Li Y, Zhao Z, Liu L, et al. Improved output performance of triboelectric nanogenerator by fast accumulation process of surface charges[J]. Advanced Energy Materials, 2021, 11: 2100050.
[45] Wu H, He W, Shan C, et al. Achieving remarkable charge density via self-polarization of polar high-k material in charge-excitation triboelectric nanogenerator[J]. Advanced Materials, 2022, 34: 2109918.
[46] Wu H, Wang J, He W, et al. Ultrahigh output charge density achieved by charge trapping failure of dielectric polymers[J]. Energy & Environmental Science, 2023, 16: 2274-2283.
[47] Liu D, Yin X, Guo H, et al. A constant current triboelectric nanogenerator arising from electrostatic breakdown [J]. Science Advances, 2019, 5: eaav6437.
[48] Zhao Z, Dai Y, Liu D, et al. Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density[J]. Nature Communications, 2020, 11: 6186.
[49] Zhao Z, Zhou L, Li S, et al. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator[J]. Nature Communications, 2021, 12: 4686.
[50] Dai K, Liu D, Yin Y, et al. Transient physical modeling and comprehensive optimal design of air-breakdown direct-current triboelectric nanogenerators[J]. Nano Energy, 2022, 92: 106742.
[51] Zhang J, Gao Y, Liu D, et al. Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator[J]. Nature Communications, 2023, 14: 3218.
[52] Shan C, He W, Wu H, et al. A high-performance bidirectional direct current teng by triboelectrification of two dielectrics and local corona discharge[J]. Advanced Energy Materials, 2022, 12: 2200963.
[53] Zeng Q, Chen A, Zhang X, et al. A dual-functional triboelectric nanogenerator based on the comprehensive integration and synergetic utilization of triboelectrification, electrostatic induction, and electrostatic discharge to achieve alternating current/direct current convertible outputs[J]. Advanced Materials, 2023, 35: 2208139.
[54] Gao Y, Liu D, Li Y, et al. Achieving high-efficiency triboelectric nanogenerators by suppressing the electrostatic breakdown effect[J]. Energy & Environmental Science, 2023, 16(5): 2304-2315.
[55] Ouyang H, Liu Z, Li N, et al. Symbiotic cardiac pacemaker[J]. Nature Communications, 2019, 10: 1821.
[56] Hinchet R, Yoon H J, Ryu H, et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology[J]. Science, 2019, 365: 491-494.
[57] Wang J, Li S, Yi F, et al. Sustainably powering wearable electronics solely by biomechanical energy[J]. Nature Communications, 2016, 7: 12744.
[58] Hu Y, Li X, Gao Y, et al. A noncontact constant-voltage triboelectric nanogenerator via charge excitation[J]. ACS Energy Letters, 2023, 8: 2066-2076.
[59] Zhou L, Liu L, Qiao W, et al. Improving degradation efficiency of organic pollutants through a self-powered alternating current electrocoagulation system[J]. ACS Nano, 2021, 15: 19684-19691.
[60] Han J, Feng Y, Chen P, et al. Wind-driven soft-contact rotary triboelectric nanogenerator based on rabbit fur with high performance and durability for smart farming [J]. Advanced Functional Materials, 2022, 32: 2108580.
[61] Xia X, Zhou Z, Shang Y, et al. Metallic glass-based triboelectric nanogenerators[J]. Nature Communications, 2023, 14: 1023.
[62] Zu L, Wen J, Wang S, et al. Multiangle, self-powered sensor array for monitoring head impacts[J]. Science Advances, 2023, 9: eadg5152.
[63] Xu Z, Cao L N Y, Li C, et al. Digital mapping of surface turbulence status and aerodynamic stall on wings of a flying aircraft[J]. Nature Communications, 2023, 14: 2792.
[64] Pang H, Feng Y, An J, et al. Segmented swing-structured fur-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications[J]. Advanced Functional Materials, 2021, 31: 2106398.
[65] Qiu H, Wang H, Xu L, et al. Brownian motor inspired monodirectional continuous spinning triboelectric nanogenerators for extracting energy from irregular gentle water waves[J]. Energy & Environmental Science, 2023, 16: 473-483.
[66] Zhang C, He L, Zhou L, et al. Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy[J]. Joule, 2021, 5: 1613-1623.
[67] Li X, Xu L, Lin P, et al. Three-dimensional chiral networks of triboelectric nanogenerators inspired by metamaterial's structure[J]. Energy & Environmental Science, 2023, doi: 10.1039/D3EE01035J.
[68] Liang X, Liu S, Lin S, et al. Liquid-solid triboelectric nanogenerator arrays based on dynamic electric-doublelayer for harvesting water wave energy[J]. Advanced Energy Materials, 2023, 13: 2300571.
[69] Lei R, Shi Y, Ding Y, et al. Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy[J]. Energy & Environmental Science, 2020, 13: 2178-2190.
[70] Guo H, Chen J, Wang L, et al. A highly efficient triboelectric negative air ion generator[J]. Nature Sustainability, 2021, 4: 147-153.
[71] Li X, Luo J, Han K, et al. Stimulation of ambient energy generated electric field on crop plant growth[J]. Nature Food, 2022, 3: 133-142.
Outlines

/