Innovation leads selfreliance and selfimprovement—creating a source of high-quality technological

Application of quantum causal order in quantum information processing

  • CHEN Geng ,
  • LI Chuanfeng
Expand
  • School of Physical Science, University of Science and Technology of China, Hefei 230026, China

Received date: 2023-07-20

  Revised date: 2023-09-11

  Online published: 2023-10-27

Abstract

Quantum information research aims to use quantum resources to achieve communication security, computing power and measurement accuracy beyond classical limits. In recent years, a new quantum resource—quantum causal order—has been proposed and proven to be able to provide unique advantages in some kinds of quantum information processes. This article reviews the existing quantum resources and the application of quantum causal order in quantum information and focuses on the super-Heisenberg limit accuracy it can provide in quantum metrology tasks. This new quantum resource may potentially provide essential promotion in various quantum information processing.

Cite this article

CHEN Geng , LI Chuanfeng . Application of quantum causal order in quantum information processing[J]. Science & Technology Review, 2023 , 41(19) : 43 -47 . DOI: 10.3981/j.issn.1000-7857.2023.19.004

References

[1] Chiribella G D, Ariano G M, Perinotti P, et al. Beyond quantum computers[J]. 2009, arXiv: 0912.0195.
[2] Rubino G, Rozema L A, Feix A, et al. Experimental verification of an indefinite causal order[J]. Science Advances,2017, 3(3): e1602589.
[3] Chiribella G. Perfect discrimination of no-signalling channels via quantum superposition of causal structures[J].Physical Review A, 2012, 86(4): 040301.
[4] Yao X C, Fiurášek J, Lu H, et al. Experimental realization of programmable quantum gate array for directly probing commutation relations of Pauli operators[J]. Physical Review Letters, 2010, 105(12): 120402.
[5] Procopio L M, Moqanaki A, Araújo M, et al. Experimental superposition of orders of quantum gates[J]. Nature Communications, 2015, 6(1): 7913.
[6] Ebler D, Salek S, Chiribella G. Enhanced communication with the assistance of indefinite causal order[J]. Physical Review Letters, 2018, 120(12): 120502.
[7] Guo Y, Hu X M, Hou Z B, et al. Experimental transmission of quantum information using a superposition of causal orders[J]. Physical Review Letters, 2020, 124(3):030502.
[8] Napolitano M, Koschorreck M, Dubost B, et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit[J]. Nature, 2011, 471(7339): 486-489.
[9] Zwierz M, Pérez-Delgado C A, Kok P. Ultimate limits to quantum metrology and the meaning of the Heisenberg limit[J]. Physical Review A, 2012, 85(4): 042112.
[10] Berry D W, Hall M J W, Zwierz M, et al. Optimal Heisenberg-style bounds for the average performance of arbitrary phase estimates[J]. Physical Review A, 2012,86(5): 053813.
[11] Hall M J W, Wiseman H M. Does nonlinear metrology offer improved resolution? Answers from quantum information theory[J]. Physical Review X, 2012, 2(4): 041006.
[12] Chen G, Zhang L, Zhang W H, et al. Achieving Heisenberg-scaling precision with projective measurement on single photons[J]. Physical Review Letters, 2018, 121(6):060506.
[13] Chen G, Aharon N, Sun Y N, et al. Heisenberg-scaling measurement of the single-photon Kerr non-linearity using mixed states[J]. Nature Communications, 2018, 9(1):93.
[14] Zhao X, Yang Y, Chiribella G. Quantum metrology with indefinite causal order[J]. Physical Review Letters,2020, 124(19): 190503.
[15] Yin P, Zhao X, Yang Y, et al. Experimental superHeisenberg quantum metrology with indefinite gate order[J]. Nature Physics, 2023: 1-6.

 

Outlines

/