[1] Herlach F, Perenboom J A. Magnet laboratory facilities worldwide: An update[J]. Physica B: Condensed Matter, 1995, 211(1-4): 1-16.
[2] Bitter F. Water cooled magnets[J]. Review of Scientific Instruments, 1962, 33(3): 342-349.
[3] Gao B, Schneider-Muntau H J, Eyssa Y, et al. A new concept in Bitter disk design[J]. IEEE Transactions on Magnetics, 1996, 32(4): 2503-2506.
[4] Bird M, Bole S, Eyssa Y, et al. Design of a poly-Bitter magnet at the NHMFL[J]. IEEE Transactions on Magnetics, 1996, 32(4): 2542-2545.
[5] Wijnen F J, Wiegers S A, Van Velsen J M, et al. Construction and performance of a 38-T resistive magnet at the Nijmegen High Field Magnet Laboratory[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-5.
[6] Gao B, Ding L, Wang Z, et al. Water-cooled resistive magnets at CHMFL[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-6.
[7] Toth J, Bole S. Design, construction, and first testing of a 41.5 T all-resistive magnet at the NHMFL in Tallahassee [J]. IEEE Transactions on Applied Superconductivity, 2017, 28(3): 1-4.
[8] Schneider-Muntau H J. Generation of very high continuous fields by polyhelix and polyhelix hybrid magnets[J]. IEEE Transactions on Magnetics, 1982, 18(6): 1565-1570.
[9] Carden P. Testing the ANU 30 T high field magnet at Canberra[J]. Journal of Physics E: Scientific Instruments, 1972, 5(7): 667.
[10] Kamerlingh Onnes H. Report on the researches made in the Leiden Cryogenic Laboratory between the Second and Third International Congress of Refrigeration[J]. Communications From the Kamerlingh Onnes Laboratory of the University of Leiden, 1913, 34(55): 55-70.
[11] Yntema G. Niobium superconducting magnets[J]. IEEE Transactions on Magnetics, 1987, 23(2): 390-395.
[12] Kunzler J E, Buehler E, Hsu F, et al. Superconductivity in Nb3Sn at high current density in a magnetic field of 88 kgauss[J]. Physical Review Letters, 1961, 6(3): 89.
[13] Gupta R, Anerella M, Joshi P, et al. Design, construction, and testing of a large-aperture high-field HTS SMES coil[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-8.
[14] Yoon S, Kim J, Cheon K, et al. 26 T 35 mm all-GdBa2Cu3O7-x multi-width no-insulation superconducting magnet[J]. Superconductor Science and Technology, 2016, 29(4): 04LT04.
[15] Wikus P, Frantz W, Kümmerle R, et al. Commercial gigahertz-class NMR magnets[J]. Superconductor Science and Technology, 2022, 35(3): 033001.
[16] Weijers H W, Markiewicz W D, Gavrilin A V, et al. Progress in the development and construction of a 32-T superconducting magnet[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-7.
[17] Liu J, Wang Q, Qin L, et al. World record 32.35 tesla direct-current magnetic field generated with an all-superconducting magnet[J]. Superconductor Science and Technology, 2020, 33(3): 03LT01.
[18] 马衍伟 . 超导材料科学与技术[M]. 北京: 科学出版社,2022: 91-92.
[19] Godeke A. A review of the properties of Nb3Sn and their variation with A15 composition, morphology and strain state[J]. Superconductor Science and Technology, 2006, 19(8): R68.
[20] Abdyukhanov I, Vorobieva A, Dergunova E, et al. The RRR parameter of the ITER type bronze-route Cr-Coated Nb3Sn strands after different heat treatments[J]. IEEE Transactions on Applied Superconductivity, 2011, 22(3): 4802804.
[21] Kim J, Sim K, Jang K, et al. Effects of Cr diffusion on RRR values of Cr-plated Nb3Sn strands fabricated by internal-tin process[J]. IEEE Transactions on Applied Superconductivity, 2008, 18(2): 1043-1046.
[22] Barzi E, Zlobin A V. Research and development of Nb3Sn wires and cables for high-field accelerator magnets[J]. IEEE Transactions on Nuclear Science, 2016, 63 (2): 783-803.
[23] Godeke A, Den Ouden A, Nijhuis A, et al. State of the art powder-in-tube niobium-tin superconductors[J]. Cryogenics, 2008, 48(7/8): 308-316.
[24] Senatore C, Alessandrini M, Lucarelli A, et al. Progresses and challenges in the development of high-field solenoidal magnets based on RE123 coated conductors[J]. Superconductor Science and Technology, 2014, 27(10): 103001.
[25] Macmanus-Driscoll J L, Wimbush S C. Processing and application of high-temperature superconducting coated conductors[J]. Nature Reviews Materials, 2021, 6(7): 587-604.
[26] Motowidlo L, Galinski G, Ozeryansky G, et al. Dependence of critical current density on filament diameter in round multifilament Ag-sheathed Bi2Sr2CaCu2Ox wires processed in O2[J]. Applied Physics Letters, 1994, 65 (21): 2731-2733.
[27] Okada M, Tanaka K, Wakuda T, et al. A new symmetrical arrangement of tape-shaped multifilaments for Bi2212/Ag round-shaped wire[J]. IEEE Transactions on Applied Superconductivity, 1999, 9(2): 1904-1907.
[28] Larbalestier D C, Jiang J, Trociewitz U A, et al. Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T[J]. Nature Materials, 2014, 13(4): 375-381.
[29] Ikeda Y, Ito H, Shimomura S, et al. Phase diagram studies of the BiO1.5-PbO-SrO-CaO-CuO system and the formation process of the "2223(high-Tc)" phase[J]. Physica C: Superconductivity, 1991, 190(1/2): 18-21.
[30] Sato K I, Kobayashi S I, Nakashima T. Present status and future perspective of bismuth-based high-temperature superconducting wires realizing application systems [J]. Japanese Journal of Applied Physics, 2011, 51(1R): 010006.
[31] Wilson M N. Superconducting Magnets[M]. New York: Oxford University Press, 1987.
[32] Iwasa Y. Case studies in superconducting magnets design and operational issues[M]. New York: Spring Press, 2009.
[33] Hahn S, Park D K, Bascunan J, et al. HTS pancake coils without turn-to-turn insulation[J]. IEEE Transactions on Applied Superconductivity, 2010, 21(3): 15921595.
[34] Foner S. High-field magnets and high-field superconductors[J]. IEEE Transactions on Applied Superconductivity, 1995, 5(2): 121-140.
[35] Schneider-Muntau H. A 30 tesla hybrid magnet with 5 cm bore: A French-German project[J]. IEEE Transactions on Magnetics, 1981, 17: 1783-1785.
[36] Inoue K, Kiyoshi T, Kosuge M, et al. First test operation of 40 tesla class hybrid magnet system[J]. IEEE Transactions on Magnetics, 1996, 32(4): 2450-2453.
[37] Bird M, Bole S, Dixon I, et al. The 45 T hybrid insert: Recent achievements[J]. Physica B: Condensed Matter, 2001, 294: 639-642.
[38] Muzzi L, De Marzi G, Di Zenobio A, et al. Cable-inconduit conductors: Lessons from the recent past for future developments with low and high temperature superconductors[J]. Superconductor Science and Technology, 2015, 28(5): 053001.
[39] Uglietti D, Sedlak K, Wesche R, et al. Progressing in cable-in-conduit for fusion magnets: From ITER to low cost, high performance DEMO[J]. Superconductor Science and Technology, 2018, 31(5): 055004.
[40] Uglietti D. A review of commercial high temperature superconducting materials for large magnets: From wires and tapes to cables and conductors[J]. Superconductor Science and Technology, 2019, 32(5): 053001.