Innovation leads selfreliance and selfimprovement—creating a source of high-quality technological

Research status and development strategy outlook of emergence food

  • NING Cheng ,
  • LIU Changhong ,
  • ZHENG Lei
Expand
  • School of Food and Biological Engineering,Hefei University of Technology, Hefei 230601, China

Received date: 2023-08-03

  Revised date: 2023-09-24

  Online published: 2023-10-27

Abstract

Emergency food is a category of food used to replenish nutrients and calories to sustain human body during emergency events,and its nutritional safety, processing and packaging, storage and distribution characteristics are significantly different from the conventional food. This paper introduces the current situation of emergency food product development, storage,transportation, processing and packaging technologies,and concludes with the typical features, development trends, and existing problems of the emergency food. Moreover, this paper envisions the future research and development strategies, processing tactics, and safety testing methods for emergency food with the objective of providing favourable recommendations for improving the development of emergency food.

Cite this article

NING Cheng , LIU Changhong , ZHENG Lei . Research status and development strategy outlook of emergence food[J]. Science & Technology Review, 2023 , 41(19) : 166 -176 . DOI: 10.3981/j.issn.1000-7857.2023.19.020

References

[1] 於晓敏, 程梦蓉, 亓树艳, 等. 中国应急食品现状与发展[J]. 食品工业, 2019, 40(12): 5.
[2] Zheng J Y, Tian L, Bayen S. Chemical contaminants in canned food and can-packaged food: A review[J]. Critical Reviews in Food Science and Nutrition, 2023, 63(16): 2687-2718.
[3] 毕珣, 王志宏, 孙文军, 等. 现代应急救援食品的国内外研究现状与进展[J]. 中华灾害救援医学, 2015, 3(5):289-291.
[4] Hoffman R. Convenience foods and health in the elderly [J]. Maturitas, 2016, 86(4): 1-2.
[5] Xu J, Xie Y C, Paul N C, et al. Water sorption characteristics of freeze-dried bacteria in low-moisture foods[J]. International Journal of Food Microbiology, 2022, 362(2): 316.
[6] Liu W C, Zhang M, Mujumdar A S, et al. Role of dehydration technologies in processing for advanced ready-toeat foods: A comprehensive review[J]. Critical Reviews in Food Science and Nutrition, 2021, 12(28): 1-15.
[7] Pirveisi N, Ariaii P, Esmaeili M, et al. Investigating active packaging based on cellulose nanofibers oxidized by TEMPO method containing hydrolyzed protein obtained from pine tree fruit on the quality of pacific white shrimp (Litopenaeus vannamei) during the storage period[J]. Journal of Food Measurement and Characterization, 2023, 17 (4): 3323-3337.
[8] Kumar A, Anju T, Kumar S, et al. Integrating omics and gene editing tools for rapid improvement of traditional food plants for diversified and sustainable food security[J]. International Journal of Molecular Sciences, 2021, 22(15): 8093.
[9] 郝利民, 郭长江, 何锦风, 等. 一种抗疲劳泡腾饮料对游泳大鼠生理生化变化的干预作用[J]. 食品与发酵工业,2002(7): 50-53.
[10] 吴天一, 祁生贵, 郝利民, 等 . 抗缺氧功能发酵物的筛选及其对缺氧大鼠糖代谢关键酶活性的影响[J]. 高原医学杂志, 2016, 26(4): 1-5.
[11] 刘天宇 . 长沙市水果物流配送问题研究[J]. 黑龙江粮食, 2022(1): 47-49.
[12] 杜文龙. 中国粮食供应链的构建[D]. 北京: 中国社会科学院财贸所, 2023.
[13] 瑭杰. 自然灾害中应急食品运输风险分析及方案优化[D]. 广州: 广州大学, 2011.
[14] Yang B, Huang J, Jin W, et al. Effects of drying methods on the physicochemical aspects and volatile compounds of Lyophyllum decastes[J]. Foods, 2022, 11(20): 3249.
[15] Jiang N, Liu C, Li D, et al. Evaluation of freeze drying combined with microwave vacuum drying for functional okra snacks: Antioxidant properties, sensory quality, and energy consumption[J]. LWT-Food Science and Technology, 2017, 82: 216-226.
[16] 张英, 白杰, 张海峰, 等 . 超高压技术在食品加工中的应用与研究进展[J]. 保鲜与加工, 2008, 8(5): 18-21.
[17] Rodarte D, Zamora A, Trujillo A J, et al. Effect of ultrahigh pressure homogenization on cream: Shelf life and physicochemical characteristics[J]. LWT, 2018, 92: 108115.
[18] Lluansi A, Lliros M, Oliver L, et al. In vitro prebiotic effect of bread-making process in inflammatory bowel disease microbiome[J]. Frontiers in Microbiology, 2021, 12: 16.
[19] 朱转, 侯磊, 沈群, 等 . 浸泡和超高压预处理对米饭中淀粉消化特性的影响[J]. 食品工业科技, 2013, 11: 85-87.
[20] Wang W, Zhang K, Li C, et al. A novel biodegradable film from edible mushroom (F.velutipes) by product: Microstructure, mechanical and barrier properties associated with the fiber morphology[J]. Innovative Food Science & Emerging Technologies, 2018, 47: 153-160.
[21] 王红育, 李颖 . 高新技术在军用食品研究开发中的应用及启示[J]. 食品科学, 2009, 30(15): 245-248.
[22] Zhao X, Du F, Zhu Q, et al. Effect of superfine pulverization on properties of Astragalus membranaceus powder [J]. Powder Technology, 2010, 203(3): 620-625.
[23] Li Y, Wang H, Wang L, et al. Milling of wheat bran: Influence on digestibility, hydrolysis and nutritional properties of bran protein during in vitro digestion[J]. Food Chemistry, 2023, 404(Pt A): 134559.
[24] Sun J, Wang N, Wang C, et al. Effects of superfine pulverization technology on the morphology, microstructure, and physicochemical properties of Apium graveolens L. root[J]. Microscopy Research and Technique, 2022(7): 85.
[25] Zhang Y K, Zhang M L, Guo X Y, et al. Improving the adsorption characteristics and antioxidant activity of oat bran by superfine grinding[J]. Food Science & Nutrition, 2023, 11(1): 216-227.
[26] Estevinho B N, Carlan I, Blaga A, et al. Soluble vitamins (vitamin B12 and vitamin C) microencapsulated with different biopolymers by a spray drying process[J]. Powder Technology, 2016, 289: 71-78.
[27] De P A, Mauriello G. Probiotication of foods: A focus on microencapsulation tool[J]. Trends in Food Science & Technology, 2016, 48: 27-39.
[28] Vhangani L N, Van W J. Antioxidant activity of Maillard reaction products (MRPs) derived from fructose-lysine and ribose-lysine model systems[J]. Food Chemistry, 2013, 137(14): 92-98.
[29] 李鹏, 吴俊 . 微胶囊技术及其在军用食品中的应用[J]. 食品研究与开发, 2008(1): 177-179.
[30] 王红育, 李颖 . 高新技术在军用食品研究开发中的应用及启示[J]. 食品科学, 2009(15): 245-248.
[31] Das A B, Goud V V, Das C. Microencapsulation of anthocyanin extract from purple rice bran using modified rice starch and its effect on rice dough rheology[J]. International Journal of Biological Macromolecules, 2019, 124: 573-581.
[32] 卢姗姗, 王典术 . 纳米技术在军用食品中的应用及前景[J]. 食品研究与开发, 2015, 36(3): 146-148.
[33] Wang Y, Zhang Q, Zhang C L, et al. Characterisation and cooperative antimicrobial properties of chitosan/nano-ZnO composite nanofibrous membranes[J]. Food Chemistry, 2012, 132(1): 419-427.
[34] Labuza T P, Breene W. Applications of“active packaging”for improvement of shelf⁃life and nutritional quality of fresh and extended shelf-life foods[J]. Journal of Food Processing and Preservation, 1989, 13(1): 1-69.
[35] Floros J D, Dock L L, Han J H. Active packaging technologies and applications[J]. Food Cosmetics and Drug Packaging, 1997, 20(1): 10-17.
[36] Han J W, Luis R G, Qian J P, et al. Food packaging: A comprehensive review and future trends[J]. Comprehensive Reviews in Food Science & Food Safety, 2018, 17 (4): 860-877.
[37] Sharma C, Dhiman R, Rokana N, et al. Nanotechnology: An untapped resource for food packaging[J]. Frontiers in Microbiology, 2017, 8: 1735.
[38] Bikiaris D N, Triantafyllidis K S. HDPE/Cu-nanofiber nanocomposites with enhanced antibacterial and oxygen barrier properties appropriate for food packaging applications[J]. Materials Letters, 2013, 93: 1-4.
[39] He X, Hwang H M. Nanotechnology in food science:Functionality, applicability, and safety assessment[J]. Journal of Food and Drug Analysis, 2016, 24(4): 671681.
[40] Kelepouris T, Pramatari K, Doukidis G. RFID⁃enabled traceability in the food supply chain[J]. Industrial Management & Data Systems, 2007, 107(2): 183-200.
[41] Bibi F, Guillaume C, Gontard N, et al. A review: RFID technology having sensing aptitudes for food industry and their contribution to tracking and monitoring of food products[J]. Trends in Food Science & Technology, 2017, 62: 91-103.
[42] 吕亚娟, 王帅, 王军. 我军军用食品包装信息化技术应用进展[J]. 包装工程, 2009, 30(2): 119-121.
[43] Taoukis P, Labuza T. Time-temperature indicators (TTIs) [J]. Novel Food Packaging Techniques, 2003: 103-126.
[44] Taoukis P, Labuza T P. Applicability of time-temperature indicators as shelf life monitors of food products[J]. Journal of Food Science, 1989, 54(4): 783-788.
[45] Taoukis P, Labuza T P. Reliability of time-temperature indicators as food quality monitors under nonisothermal conditions[J]. Journal of Food Science, 1989, 54(4): 789792.
[46] 陈俊忠, 葛纪者 . 可食性包装材料引领食品包装可持续发展[J]. 印刷技术, 2014(16): 31-33.
[47] 李俊杰 . 可食性包装材料及其应用[J]. 中外食品: 酒尚, 2003(12): 32-34.
[48] Lavoine N, Desloges I, Dufresne A, et al. Microfibrillated cellulose-Its barrier properties and applications in cellulosic materials: A review[J]. Carbohydrate Polymers, 2012, 90(2): 735-764.
[49] Nati K P, Samendra P S. Microbiological assessment of tap water following the 2016 Louisiana flooding[J]. International Journal of Environmental Research and Public Health, 2020, 17(4): 1273.
[50] Dahiya D K, Renuka, Puniya M, et al. Gut Microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: A review[J]. Frontiers in Microbiology, 2017, 8: 563.
[51] Giri R, Shamsunnahar K, Salim A, et al. OP36 Investigating the role of bioactives produced by gut bacteria to modulate immune response in inflammatory bowel disease[J]. Journal of Crohn's and Colitis, 2020, 14: S037S038
[52] Jordi S, Mónica B, Ana P, et al. Dietary fibre, nuts and cardiovascular diseases[J]. British Journal of Nutrition, 2006, 96(Suppl 2): S45-S51.
[53] Wang H, Huang X J, Tan H Z, et al. Interaction between dietary fiber and bifidobacteria in promoting intestinal health[J]. Food Chemistry, 2022, 393: 133407.
[54] Long Y Z, Zhang M, Devahastin S, et al. Progresses in processing technologies for special foods with ultra-long shelf life[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(9): 2355-2374.
[55] Shi Y L, Liu W, Zhao P G, et al. Rapid and nondestructive determination of deoxynivalenol (DON) content in wheat using multispectral imaging (MSI) technology with chemometric methods[J]. Analytical Methods, 2020, 12 (26): 3390-3396.
[56] Liu W, Deng H Y, Shi Y L, et al. Application of multispectral imaging combined with machine learning methods for rapid and non-destructive detection of zearalenone (ZEN) in maize[J]. Measurement, 2022, 203: 111944.
[57] Du Y W, Huang H, Peng Y, et al. Rapid determination of Staphylococcus aureus enterotoxin B in milk using Raman spectroscopy and chemometric methods[J]. Journal of Raman Spectroscopy, 2022, 53(4): 709-714.
[58] Liu W, Zhao P G, Wu C S, et al. Rapid determination of aflatoxin B1 concentration in soybean oil using terahertz spectroscopy with chemometric methods[J]. Food Chemistry, 2019, 293: 213-219.
[59] Liu W, Sun S, Liu Y, et al. Determination of benzo(a)pyrene in peanut oil based on Raman spectroscopy and machine learning methods[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 299: 122806.
[60] Gao S J, Wang R R, Bi Y L, et al. Identification of frozen/thawed beef based on label-free detection of hemin (Iron Porphyrin) with solution-gated graphene transistor sensors[J]. Sensors and Actuators B: Chemical, 2020, 305: 127167.
[61] Mao Y, Gao S, Yao L, et al. Single-atom nanozyme enabled fast and highly sensitive colorimetric detection of Cr(VI) [J]. Journal of Hazardous Materials, 2021, 408: 124898.
[62] Zhu W Y, Ji G N, Chen R P, et al. A fluorescence aptasensor based on hybridization chain reaction for simultaneous detection of T-2 toxins and zearalenone1[J]. Talanta, 2023, 255: 124249.
Outlines

/