Taking the grain-related data of 30 provinces in China from 2002 to 2020 as the research sample, based on the estimation of the flow of virtual cultivated land resources in grain trade, the Dagum Gini coefficient and its decomposition method, Kernel density estimation method and Markov chain analysis method were used to empirically investigate the regional differences and distribution dynamic evolution trend of virtual cultivated land resource flow in China's grain trade. The results show that: (1) the net import of virtual arable land resources in China's grain trade is on the rise, but the development is unbalanced between regions, showing the characteristics of "eastern> western > central"; (2) Inter-regional differences are the main source of regional differences in the net import of virtual arable land resources in China's grain trade, with a contribution share between 60%~70%, and the overall differences between the whole country and the three major regions are large, showing a trend of "rising first and then falling"; (3) The center development trend of net imports of virtual arable land resources in grain trade in the whole country and the three major regions gradually shifted to the right, except for the central region, the phenomenon of right tailing is significant, and the polarization phenomenon is alleviated; (4) When the spatial conditions are not considered, the net import of virtual cultivated land resources is more sustainable, and there will be no state transfer between provinces, but the trend to a high level is obvious. Therefore, it is necessary to clearly understand the spatial imbalance of the net import of virtual cultivated land resources in grain trade, and dynamically adjust the grain import and export trade policy, and at the same time pay attention to avoiding the negative impact of excessive import of virtual cultivated land resources in grain trade on the domestic market.
[1] 朱晶, 臧星月, 李天祥 . 新发展格局下中国粮食安全风险及其防范[J]. 中国农村经济, 2021(9): 2-21.
[2] 曹冲, 夏咏, 丁晨晨. 虚拟耕地资源与农业经济增长: 作用机理及贡献份额研究[J]. 长江流域资源与环境, 2020, 29(12): 2816-2826.
[3] 闫丽珍, 成升魁, 闵庆文 . 玉米南运的虚拟耕地资源流动及其影响分析[J]. 中国科学院研究生院学报, 2006(3): 342-348.
[4] Allan J A. Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible[C]//Priorities for water resources allocation and management. London: ODA, 1993: 13-26.
[5] Borgstrom G. The hungry planet: The modern world at the edge of famine[J]. Journal of European Economic History, 1967, 22(1): 99-112.
[6] 罗贞礼, 龙爱华, 黄璜, 等. 虚拟土战略与土地资源可持续利用的社会化管理[J]. 冰川冻土, 2004(5): 624-631.
[7] Würtenberger L, Koellner T, Binder C R. Virtual land use and agricultural trade: Estimating environmental and socio-economic impacts[J]. Ecological Economics, 2006, 57(4): 679-697.
[8] 曹冲, 陈俭, 夏咏 . 中国主要农产品贸易中隐含的虚拟耕地资源“尾效”研究[J]. 中国人口·资源与环境, 2019, 29(2): 72-78.
[9] 钱龙, 饶清玲, 曹宝明, 等. 中国与“一带一路”沿线国家的粮食贸易及其虚拟水土资源估算[J]. 农业现代化研究, 2021, 42(3): 430-440.
[10] 刘航, 申格, 杨婧, 等 . 中国大豆进口关税调整对全球水土资源转移的影响评估[J]. 自然资源学报, 2021, 36(6): 1535-1544.
[11] 辛良杰. 中国居民膳食结构升级、国际贸易与粮食安全[J]. 自然资源学报, 2021, 36(6): 1469-1480.
[12] 成丽, 方天堃, 潘春玲. 中国粮食贸易中虚拟耕地贸易的估算[J]. 中国农村经济, 2008(6): 25-31.
[13] 瞿商, 杨祖义 . 粮食安全与中国耕地关系的动态调整——基于 1980—2004 年中国虚拟耕地及其贸易的研究[J]. 当代中国史研究, 2009, 16(2): 69-75.
[14] 马博虎, 张宝文 . 中国粮食对外贸易中虚拟耕地贸易量的估算与贡献分析——基于 1978—2008 年中国粮食对外贸易数据的实证分析[J]. 西北农林科技大学学报(自然科学版), 2010, 38(6): 115-119.
[15] 王琼 . 中国粮食虚拟耕地进口的测度及其影响因素——基于大豆、玉米、小麦和大米的分析[J]. 财经理论与实践, 2018, 39(3): 134-139.
[16] 孙致陆, 贾小玲, 李先德. 中国与“一带一路”沿线国家粮食贸易演变趋势及其虚拟耕地资源流量估算[J]. 华中农业大学学报(社会科学版), 2019(1): 24-32.
[17] 强文丽, 张翠玲, 刘爱民, 等 . 全球农产品贸易的虚拟耕地资源流动演变及影响因素[J]. 资源科学, 2020, 42(9): 1704-1714.
[18] 黄雨, 田明华, 隋明华. 中国农畜产品虚拟耕地流动趋势及发展战略[J]. 当代经济研究, 2017(6): 90-96.
[19] 刘爱民, 薛莉, 成升魁, 等 . 我国大宗农产品贸易格局及对外依存度研究——基于虚拟耕地资源的分析和评价[J]. 自然资源学报, 2017, 32(6): 915-926.
[20] 孙才志, 汤玮佳, 邹玮. 中国粮食贸易中的虚拟资源生态要素估算及效应分析[J]. 资源科学, 2012, 34(3): 589-597.
[21] 贲培琪, 吴绍华, 李啸天, 等 . 中国省际粮食贸易及其虚拟耕地流动模拟[J]. 地理研究, 2016, 35(8): 1447-1456.
[22] 梁流涛, 唐林昊, 李士超, 等 . 基于生态网络架构的虚拟耕地流动格局及其稳定性评价[J]. 经济地理, 2020, 40(1): 140-149.
[23] 罗开盛, 陶福禄 . 虚拟土定量测算——以甘肃省为例[J]. 中国科学院大学学报, 2017, 34(5): 582-590.
[24] 刘幸菡, 吴国蔚 . 虚拟水贸易在我国农产品贸易中的实证研究[J]. 国际贸易问题, 2005(9): 10-15.
[25] Dagum C. A new approach to the decomposition of the gini income inequality ratio[J]. Empirical Economics, 1997, 22(4): 515-531.
[26] 辛冲冲, 陈志勇 . 中国基本公共服务供给水平动态分布、地区差异及收敛性[J]. 数量经济技术经济研究, 2019, 36(8): 52-71.
[27] 刘传明, 尹秀, 王林杉. 中国数字经济发展的区域差异及动态分布演进[J]. 中国科技论坛, 2020(3): 97-109.
[28] 邓宗兵, 何若帆, 陈钲, 等 . 中国八大综合经济区生态文明发展的区域差异及收敛性研究[J]. 数量经济技术经济研究, 2020, 37(6): 3-25.
[29] 郭美晨. 中国品牌发展的区域差异及动态演进[J]. 数量经济技术经济研究, 2020, 37(4): 165-180.
[30] Parzen E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3): 1065-1076.
[31] Katkovnik V, Shmulevich I. Kernel density estimation with adaptive varying window size[J]. Pattern Recognition Letters, 2002, 23(14): 1641-1648.
[32] 赵磊, 方成 . 中国省际新型城镇化发展水平地区差异及驱动机制[J]. 数量经济技术经济研究, 2019, 36(5): 44-64.
[33] 魏敏, 李书昊 . 新时代中国经济高质量发展水平的测度研究[J]. 数量经济技术经济研究, 2018, 35(11): 3-20.