Reviews

Research progress on key technologies for drilling and completion of offshore gas hydrate

  • WANG Zhigang ,
  • GONG Jianyu ,
  • WU Jixiu ,
  • YIN Hao ,
  • SHI Shanshan ,
  • YAN Jia ,
  • LI Xiaoyang
Expand
  • 1. The Institute of Exploration Techniques, Chinese Academy of Geological Sciences, Langfang 065000, China
    2. Hydrogeology Team of Hebei Coalfield Geology Bureau , Handan 056001, China

Received date: 2022-10-27

  Revised date: 2022-12-08

  Online published: 2023-11-06

Abstract

Natural gas hydrate is a kind of solid crystalline substance formed by water and methane under high pressure and low temperature, which is considered as the clean energy with the most potential to replace fossil energy by all countries in the world. The status of gas hydrate pilot production in the United States, Japan, India, South Korea and China was summarized. It was pointed out that there were some technical problems for the drilling and completion of natural gas hydrate in the sea area, such as narrow drilling fluid density window, difficult bottom hole pressure control, difficult directional well deflection, poor wellbore and wellhead stability, difficult reservoir reconstruction, and difficult sand control. The research and development status of solid fluidization drilling technology, horizontal well drilling technology, dual gradient drilling technology, pressure controlled casing drilling technology, hydraulic jet micro hole drilling technology, drilling fluid technology, and completion sand control technology were reviewed, and it was proposed that the scientific research efforts such as sand production mechanism, sand production prediction, well completion, drilling and completion equipment and instrument development must be strengthened to provide technical support for large-scale exploitation of natural gas hydrate in sea area.

Cite this article

WANG Zhigang , GONG Jianyu , WU Jixiu , YIN Hao , SHI Shanshan , YAN Jia , LI Xiaoyang . Research progress on key technologies for drilling and completion of offshore gas hydrate[J]. Science & Technology Review, 2023 , 41(20) : 71 -78 . DOI: 10.3981/j.issn.1000-7857.2023.20.008

References

[1] Andreassen K, Hart P E, MacKay M. Amplitude versus offset modeling of the bottom simulating reflection associated with submarine gas hydrates[J]. Marine Geology, 1997, 137(1-2): 25-40.
2] Archer D. Methane hydrate stability and anthropogenic climatechange[J]. Biogeosciences, 2007, 4: 521-544.
[3] 王志刚, 李小洋, 张永彬, 等. 海域非成岩天然气水合物储层改造方法分析[J]. 钻探工程, 2021, 48(6): 32-38.
[4] 吴能友, 李彦龙, 万义钊, 等. 海域天然气水合物开采增产理论与技术体系展望[J]. 天然气工业, 2020, 40(8): 100-114.
[5] Boswell R, Collett T S. Current perspectives on gas hydrate resources[J]. Energy & Environmental Science, 2011, 4(4): 1206-1215.
[6] 何家雄, 钟灿鸣, 姚永坚, 等. 南海北部天然气水合物勘查试采及研究进展与勘探前景[J]. 海洋地质前沿, 2020, 36(12):1-14.
[7] 欧芬兰, 于彦江, 寇贝贝, 等 . 水合物藏的类型、特点及开发方法探讨[J]. 海洋地质与第四纪地质, 2022, 42(1): 194-213.
[8] Kvenvolden K A. Methane hydrate-A major reservoir of carbon in the shallow geosphere[J]. Chemical Geology, 1988, 71(1-3): 41-51.
[9] Archer D, Buffett B, Brovkin V. Ocean methane hydrates as a slow tipping point in the global carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20596-20601.
[10] 马永乐, 张勇, 刘晓栋, 等 . 海域天然气水合物低温抑制性钻井液体系[J]. 钻井液与完井液, 2021, 38(5): 544-559.
[11] 陈强, 胡高伟, 李彦龙, 等 . 海域天然气水合物资源开采新技术展望[J]. 海洋地质前沿, 2020, 36(9): 44-55.
[12] 张炜, 邵明娟, 姜重昕, 等 . 世界天然气水合物钻探历程与试采进展[J]. 海洋地质与第四纪地质, 2018, 38(5): 1-13.
[13] Song Y, Yang L, Zhao J, et al. The status of natural gas hydrate research in China: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 778-791.
[14] 张伟, 梁金强, 陆敬安, 等 . 中国南海北部神狐海域高饱和度天然气水合物成藏特征及机制[J]. 石油勘探与开发, 2017, 44(5): 670-680.
[15] 梁金强, 张光学, 陆敬安, 等 . 南海东北部陆坡天然气水合物富集特征及成因模式[J]. 新能源, 2016, 36(10): 157-162.
[16] 吴能友, 黄丽, 胡高伟, 等 . 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5): 1-11.
[17] Behera S R, Dash D P. The effect of urbanization, energy consumption, and foreign direct investment on the carbon dioxide emission in the SSEA (South and Southeast Asian) region[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 96-106.
[18] Kret K, Tsuji T, Chhun C, et al. Distributions of gas hydrate and free gas accumulations associated with upward fluid flow in the Sanriku-Oki forearc basin, northeast Japan[J]. Marine and Petroleum Geology, 2020, 116: 104305.
[19] Qian J, Wang X J, Collett T S, et al. Downhole log evidence for the coexistence of structure Ⅱ gas hydrate and free gas below the bottom simulating reflector in the South China Sea[J]. Marine and Petroleum Geology, 2018, 98: 662-674.
[20] Moridis G J, Silpngarmlert S, Reagan M T, et al. Gas production from a cold, stratigraphically-bounded gas hydrate deposit at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Implications of uncertainties[J]. Marine and Petroleum Geology, 2011, 28(2): 517-534.
[21] Milkov A V, Sassen R. Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the gulf of mexico continental slope[J]. Marine and Petroleum Geology, 2003, 20(2): 111-128.
[22] 张金华, 魏伟, 魏兴华, 等 . 布莱克海台天然气水合物油气系统[J]. 中外能源, 2015, 20(4): 28-34.
[23] Matsumoto R, Tomaru H, Lu h L. Detection and evaluation of gas hydrates in the eastern nankai trough by geochemical and geophysical methods[J]. Resource Geology,2004, 54(1): 53-67.
[24] 罗承先 . 日本甲烷水合物开发现状与进展[J]. 中外能源, 2013, 18(12): 30-37.
[25] 张炜, 邵明娟, 田黔宁. 日本海域天然气水合物开发技术进展[J]. 石油钻探技术, 2017, 45(5): 98-102.
[26] 赵文韬, 荆铁亚, 郜时旺, 等 . 天然气水合物新型联动开发系统可行性研究[J]. 中外能源, 2020, 25(1): 17-24.
[27] Ryu B J, Collett T S, Riedel M, et al. Scientific results of the second gas hydrate drilling expedition in the ulleung basin(UBGH2)[J]. Marine and Petroleum Geology, 2013, 47: 1-20.
[28] Li J F, Ye J L, Qin X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1: 5-16.
[29] You K, Flemings P B, Malinverno A, et al. Mechanisms of methane hydrate formation in geological systems[J]. Reviews of Geophysics, 2019, 57(4): 1146-1196.
[30] 周守为, 陈伟, 李清平, 等 . 深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J]. 中国海上油气, 2017, 29(4): 1-8.
[31] 李文龙, 高德利, 杨进. 海域天然气水合物地层钻完井面临的挑战及展望[J]. 石油钻采工艺, 2019, 41(6): 681-689.
[32] 樊栓狮, 杨圣文, 温永刚, 等 . 水平井高效开采 Class3天然气水合物研究[J]. 天然气工业, 2013, 33(7): 36-42.
[33] Li B, Li G, Li X S, et al. The use of heat-assisted antigravity drainage method in the two horizontal wells in gas production from the Qilian Mountain permafrost hydrate deposits[J]. Journal of Petroleum Science & Engineering, 2014, 120(8): 141-153.
[34] 叶建良, 秦绪文, 谢文卫, 等 . 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3): 557-568.
[35] 韩天旺, 蒋宏伟, 杨光. 深水双梯度钻井技术分类及其研究进展[J]. 石油矿场机械, 2019, 48(5): 83-89.
[36] 王偲, 谢文卫, 张伟, 等 . RMR 技术在海域天然气水合物钻探中的适应性分析[J]. 探矿工程(岩土钻掘工程), 2020, 47(2): 17-23.
[37] Sahu C D, Rajnish K, Jitendra S, et al. A comprehensive review on exploration and drilling techniques for natural gas hydrate reservoirs[J]. Energy Fuels, 2020, 31(8): 1-87.
[38] 陈朝伟, 周英操, 申瑞臣, 等. 微小井眼钻井技术概况、应用前景和关键技术[J]. 石油钻采工艺, 2010, 32(1): 5-9.
[39] 王志刚, 胡志兴, 李小洋, 等 . 水力喷射微小井眼技术用于海域水合物钻探的可行性分析[J]. 探矿工程(岩土钻掘工程), 2020, 47(2): 30-35.
[40] 侯岳, 刘春生, 刘聃, 等 . 海域天然气水合物浅软地层水平井钻井液技术[J]. 钻探工程, 2022, 49(2): 16-21.
[41] 李彦龙, 刘乐乐, 刘昌岭, 等 . 天然气水合物开采过程中的出砂与防砂问题[J]. 海洋地质前沿, 2016, 32(7): 36-43.
[42] 宁伏龙, 方翔宇, 李彦龙, 等 . 天然气水合物开采储层出砂研究进展与思考[J]. 地质科技与通报, 2020, 39(1): 137-148.
[43] 魏伟, 张国强, 杨乾隆, 等 . 天然气水合物藏长效防砂完井探索研究[J]. 钻采工艺, 2022, 45(3): 67-72.
Outlines

/