[1] Bond W J, Woodward F I, Midgley G F. The global distribution of ecosystems in a world without fire[J]. New Phytologist, 2005, 165(2): 525-538.
[2] Johnstone J F, Allen C D, Franklin J F, et al. Changing disturbance regimes, ecological memory, and forest resilience[J]. Frontiers in Ecology and the Environment, 2016, 14(7): 369-378.
[3] Molina J R, Herrera M A, Silva F R Y. Wildfire-induced reduction in the carbon storage of Mediterranean ecosystems: An application to brush and forest fires impacts assessment[J]. Environmental Impact Assessment Review, 2019, 76: 88-97.
[4] 赵凤君, 舒立福 . 林火气象与预测预警[M]. 北京: 中国林业出版社, 2014: 1.
[5] 赵璠, 舒立福, 周汝良, 等. 林火行为蔓延模型研究进展[J]. 世界林业研究, 2017, 30(2): 5.
[6] 唐晓燕, 孟宪宇, 易浩若 . 林火蔓延模型及蔓延模拟的研究进展[J]. 北京林业大学学报,2002, 24(1): 87-91.
[7] Fons W L. Analysis of fire spread in light forest fuels[J]. Journal of Agricultural Research, 1946, 72(3): 92-121.
[8] Pastor E, L Zárate, Planas E, et al. Mathematical models and calculation systems for the study of wildland fire behaviour[J]. Progress in Energy and Combustion Science, 2003, 29(2): 139-153.
[9] Bakhshaii A, Johnson E A. A review of a new generation of wildfire-atmosphere modeling[J]. Canadian Journal of Forest Research, 2019, 49(6): 565-574.
[10] Clark T L, Jenkins M A, Coen J, et al. A coupled atmosphere fire model: Convective feedback on fire-line dynamics[J]. Journal of Applied Meteorology and Climatology, 1996, 35(6): 875-901.
[11] Clark T L, Jenkins M A, Coen J L, et al. A coupled atmosphere-fire model: Role of the convective Froude number and dynamic fingering at the fireline[J]. International Journal of Wildland Fire, 1996, 6(4): 177-190.
[12] Fox-Hughes P. Springtime fire weather in Tasmania, Australia: Two case studies[J]. Weather and Forecasting, 2012, 27(2): 379-395.
[13] Coen J L, Cameron M, Michalakes J, et al. WRF-Fire: Coupled weather-wildland fire modeling with the weather research and forecasting model[J]. Journal of Applied Meteorology and Climatology, 2013, 52(1): 16-38.
[14] Coen J L, Schroeder W. The high park fire: Coupled weather-wildland fire model simulation of a windstorm ‐ driven wildfire in Colorado's Front Range[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(1): 131-146.
[15] Burgan R E. Behave: Fire behavior prediction and fuel modeling system, fuel subsystem[M]. US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, 1984: 1.
[16] Andrews P L, Bevins C D. BEHAVE fire modeling system: Redesign and expansion[J]. Fire Management Notes, 1999, 59(2): 16-19.
[17] 贺红士, 常禹, 胡远满, 等 . 森林可燃物及其管理的研究进展与展望[J]. 植物生态学报, 2010, 34(6): 741-752.
[18] Linn R R. A Transport model for prediction of wildfire behaviour[D]. Las Cruces: Department of Mechanical Engineering New Mexico State University, 1997.
[19] Linn R R, Harlow F H. Use of transport models for wildfire behavior simulations[R]. Las Cruces: Los Alamos National Lab(LANL), 1998.
[20] Reisner J M, Bossert J, Winterkamp J. Numerical simulations of two wildfire events using a combined modeling system (HIGRAD/BEHAVE) [R]. Las Cruces: Los Alamos National Lab(LANL), 1997.
[21] Reisner J M, Knoll D A, Mousseau V A, et al. New numerical approaches for coupled atmosphere-fire models[C]//Third symposium on fire and forest meteorology. Long Beach, CA, USA, 2000: 11-13.
[22] Bova A S, Mell W E, Hoffman C M. A comparison of level set and marker methods for the simulation of wildland fire front propagation[J]. International Journal of Wildland Fire, 2015, 25(2): 229-241.
[23] Hoffman C M, Canfield J, Linn R R, et al. Evaluating crown fire rate of spread predictions from physics-based models[J]. Fire Technology, 2016, 52(1): 221-237.
[24] Mell W, Jenkins M A, Gould J, et al. A physics-based approach to modelling grassland fires[J]. International Journal of Wildland Fire, 2007, 16(1): 1-22.
[25] McGrattan K, Hostikka S, McDermott R, et al. Fire dynamics simulator user's guide[J]. NIST Special Publication, 2013, 1019(6): 1-339.
[26] Mell M E, Jenkins M A, Gould J, et al. A physics based approach to modeling grassland fires[J]. International Journal of Wildland Fire, 2007, 16: 1-22.
[27] Menage D, Chetehouna D, Mell W. Numerical simulations of fire spread in Pinus pinaster needles fuel bed[J]. Journal of Physics: Conference Series, 2012, 395(1): 12011.
[28] Castle D, Mell W E, Miller F J. Examination of the Wildland-urban interface Fire Dynamics Simulator in modeling of laboratory-scale surface-to-crown fire transition[C]//Proceedings of the 8th US National Combustion Meeting. Park City, UT, USA, 2013, 4: 3710-3722.
[29] 王正非 . 山火初始蔓延速度测算法[J]. 山地研究, 1983(2): 44-53.
[30] 张晓婷, 刘培顺, 王学芳. 王正非林火蔓延模型改进研究[J]. 山东林业科技, 2020, 50(1): 7.
[31] 毛贤敏, 徐文兴 . 林火蔓延速度计算方法的研究[J]. 辽宁气象, 1991(1): 9-13.
[32] Clark T L, Coen J, Latham D. Description of a coupled atmosphere-fire model[J]. International Journal of Wildland Fire, 2004, 13(1): 49-64.
[33] Coen J L. Simulation of the Big Elk Fire using coupled atmosphere-fire modeling[J]. International Journal of Wildland Fire, 2005, 14(1): 49-59.
[34] Clark T L. A small-scale numerical model using a terrain following coordinate transformation[J]. Journal of Computational Physics, 1977, 24: 186-215.
[35] Clark T L. Numerical simulations with a three-dimensional cloud model: Lateral boundary condition experiments and multi-cellular severe storm simulations[J]. Journal of Atmospheric Sciences, 1976, 36: 2191-2215.
[36] Clark T L, Hall W D. Multi-domain simulations of the time dependent Navier Stokes equations: Benchmark error analyses of nesting procedures[J]. Journal of Computational Physics, 1991, 92: 456-481.
[37] Clark T L, Hall W D. On the design of smooth, conservative vertical grids for interactive grid nesting with stretching[J]. Journal of Applied Meteorology, 1996, 35: 1040-1046.
[38] Clark T L, Keller T, Coen J, et al. Terrain-induced Turbulence over Lantau Island: 7 June 1994 tropical storm russ case study[J]. Journal of the Atmospheric Sciences, 1997, 54: 1795-1814.
[39] Coen J L. Modeling wildland fires: A description of the Coupled Atmosphere-Wildland Fire Environment model(CAWFE) [M]. Boulder, Colorado, USA: National Center for Atmospheric Research, 2013, 38.
[40] Coen J L, Riggan P J. Simulation and thermal imaging of the 2006 Esperanza wildfire in southern California: Application of a coupled weather-wildland fire model[J]. International Journal of Wildland Fire, 2014, 23: 755-770.
[41] Coen J L, Stavros E N, Fites-Kaufman J A. Deconstruct‐ing the King megafire[J]. Ecological Applications, 2018, 28(6): 1565-1580.
[42] Coen J L, Schroeder W, Quayle B. The generation and forecast of extreme winds during the origin and progression of the 2017 Tubbs Fire[J]. Atmosphere, 2018, 9(12): 462.
[43] The Mesoscale and Microscale Meteorology Laboratory of NCAR. WRF general information[EB/OL]. [2023-06-01]. https://www.mmm.ucar.edu/wrf-model-general.
[44] Patton E G, Coen J L. WRF-Fire: A coupled atmosphere-fire module for WRF[C]//5th WRF/14th MM5 Users' Workshop. Boulder, CO, US: National Center for Atmospheric Research (NCAR), 2004: 221-223.
[45] Mandel J, Beezley J D, Kochanski A K. Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011[J]. Geoscientific Model Development, 2011, 4(3): 591-610.
[46] Skamarock W C, Klemp J B, Dudhia J, et al. A description of the advanced research WRF model version 4[J]. NCAR Technical Note, 2019, 145: 145.
[47] Rothermel R C. A mathematical model for predicting fire spread in wildland fuels[M]. Ogden, Utah, USA: Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture, 1972: 40.
[48] Peace M, Mattner T, Mills G, et al. Fire-modified meteorology in a coupled fire-atmosphere model[J]. Journal of Applied Meteorology and Climatology, 2015, 54(3): 704-720.
[49] Peace M, McCaw L W, Kepert J D, et al. WRF and SFIRE simulations of the Layman fuel reduction burn[J]. Australian Meteorological and Oceanographic Journal, 2015, 65(3/4): 301-317.
[50] Peace M, Mattner T, Mills G, et al. Coupled fire-atmosphere simulations of the Rocky River fire using WRF-SFIRE[J]. Journal of Applied Meteorology and Climatology, 2016, 55(5): 1151-1168.
[51] Kochanski A K, Jenkins M A, Mandel J, et al. Real time simulation of 2007 Santa Ana fires[J]. Forest Ecology & Management, 2013, 294: 136-149.
[52] Jordanov G, Beezley J, Dobrinkova N, et al. Simulation of the 2009 Harmanli fire (Bulgaria)[C]//Large-Scale Scientific Computing: 8th International Conference. Sozopol, Bulgaria: Lecture Notes in Computer Science, 2012: 291-298.
[53] Beezley J D, Kochanski A, Kondratenko V Y, et al. Simulation of the Meadow Creek fire using WRF-Fire[J]. Environmental Science, 2010, 1: 1478.
[54] Xue M, Droegemeier K K, Wong V. The Advanced Regional Prediction System (ARPS)-a multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification[J]. Meteorology and Atmospheric Physics, 2000, 75(3/4): 161-193.
[55] Xue M, Droegemeier K K, Wong V, et al. The Advanced Regional Prediction System (ARPS)—a multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications[J]. Meteorology and Atmospheric Physics, 2001, 76(3/4): 143-165.
[56] Ntaimo L, Zeigler B P, Vasconcelos M J, et al. Forest fire spread and suppression in DEVS[J]. Simulation, 2004, 80(10): 479-500.
[57] Hu X, Sun Y, Ntaimo L. DEVS-FIRE: Design and application of formal discrete event wildfire spread and suppression models[J]. Simulation, 2012, 88(3): 259-279.
[58] Xue H, Gu F, Hu X. Data assimilation using sequential Monte Carlo methods in wildfire spread simulation[J]. ACM Transactions on Modeling and Computer Simulation (TOMACS), 2012, 22(4): 1-25.
[59] Xue H, Hu X, Dahl N, et al. Post-frontal combustion heat modeling in DEVS-FIRE for coupled atmosphere-fire simulation[J]. Procedia Computer Science, 2012, 9: 302-311.
[60] Dahl N, Xue H, Hu X, et al. Coupled fire-atmosphere modeling of wildland fire spread using DEVS-FIRE and ARPS[J]. Natural Hazards, 2015, 77(2): 1013-1035.
[61] Lafore J P, Stein J, Asencio N, et al. The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations[J]. Annales Geophysicae, 1998, 16: 90-109.
[62] Filippi J B, Mallet V, Nader B. Evaluation of forest fire models on a large observation database[J]. Natural Hazards & Earth System Sciences, 2014, 14: 3077-3091.
[63] Balbi J H, Morandini F, Silvani X, et al. A physical model for wildland fires[J]. Combustion and Flame, 2009, 156(12): 2217-2230.
[64] Filippi J, Bosseur F, Mari C, et al. Coupled atmosphere-wildland fifire modelling[J]. Journal of Advances in Modeling Earth Systems, 2009, 1(4): 1-11.
[65] Filippi J B, Pialat X, Clements C B. Assessment of ForeFire/Meso-NH for wildland fire/atmosphere coupled simulation of the FireFlux experiment[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2633-2640.
[66] Filippi J B, Bosseur F, Mari C, et al. Simulation of a large wildfire in a coupled fire-atmosphere model[J]. Atmosphere, 2018, 9(6): 218.
[67] Clements C B, Zhong S, Goodrick S, et al. Observing the dynamics of wildland grass fires: FireFlux-a field validation experiment[J]. Bulletin of the American Meteorological Society, 2007, 88(9): 1369-1382.
[68] Clements C B, Zhong S, Bian X, et al. First observations of turbulence generated by grass fires[J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D22102.
[69] 田晓瑞, 舒立福, 王明玉 . 林火增长模型及应用软件[J]. 世界林业研究, 2012, 25(1): 25-29.