Exclusive: Meteorology enables high-quality economic and social development

Research progress of wildfire spread model and its applicability

  • WANG Yuhong ,
  • YANG Xiaodan ,
  • REN Liwen ,
  • YUAN Xiaoyu ,
  • LIANG Li ,
  • ZHAO Luqiang
Expand
  • Public Meteorological Service Center of China Meteorological Administration, Beijing 100081, China

Received date: 2023-06-11

  Revised date: 2023-08-31

  Online published: 2023-11-21

Abstract

Understanding the characteristics of wildfire spread is one of the important reference bases for wildfire prevention and fighting. According to whether the interaction between wildfire and atmosphere is considered, the simulation models of wildfire spread are divided into uncoupled models and coupled models. In this paper the current research status is analyzed, and the existing models are summarized in terms of the principles and assumptions on which the model is based, the model’s characteristics and applicable conditions, and the relevant research progress. It shows that uncoupled models mainly establish combustion models through approximations such as energy balance equations, combustion decomposition assumptions, or ignition experiments, using meteorological factors such as wind as initial conditions to drive fire models. Whereas in most coupled models, the relevant elements of the weather model and the fire model are fed back to their models at each time step, and the integration calculation is continuously cycled to achieve mutual coupling between the atmosphere and wildfire. Compared to uncoupled models, coupled models simulate wildfire spread more closely to the actual situation, especially for large wildfires.

Cite this article

WANG Yuhong , YANG Xiaodan , REN Liwen , YUAN Xiaoyu , LIANG Li , ZHAO Luqiang . Research progress of wildfire spread model and its applicability[J]. Science & Technology Review, 2023 , 41(21) : 49 -57 . DOI: 10.3981/j.issn.1000-7857.2023.21.005

References

[1] Bond W J, Woodward F I, Midgley G F. The global distribution of ecosystems in a world without fire[J]. New Phytologist, 2005, 165(2): 525-538.
[2] Johnstone J F, Allen C D, Franklin J F, et al. Changing disturbance regimes, ecological memory, and forest resilience[J]. Frontiers in Ecology and the Environment, 2016, 14(7): 369-378.
[3] Molina J R, Herrera M A, Silva F R Y. Wildfire-induced reduction in the carbon storage of Mediterranean ecosystems: An application to brush and forest fires impacts assessment[J]. Environmental Impact Assessment Review, 2019, 76: 88-97.
[4] 赵凤君, 舒立福 . 林火气象与预测预警[M]. 北京: 中国林业出版社, 2014: 1.
[5] 赵璠, 舒立福, 周汝良, 等. 林火行为蔓延模型研究进展[J]. 世界林业研究, 2017, 30(2): 5.
[6] 唐晓燕, 孟宪宇, 易浩若 . 林火蔓延模型及蔓延模拟的研究进展[J]. 北京林业大学学报,2002, 24(1): 87-91.
[7] Fons W L. Analysis of fire spread in light forest fuels[J]. Journal of Agricultural Research, 1946, 72(3): 92-121.
[8] Pastor E, L Zárate, Planas E, et al. Mathematical models and calculation systems for the study of wildland fire behaviour[J]. Progress in Energy and Combustion Science, 2003, 29(2): 139-153.
[9] Bakhshaii A, Johnson E A. A review of a new generation of wildfire-atmosphere modeling[J]. Canadian Journal of Forest Research, 2019, 49(6): 565-574.
[10] Clark T L, Jenkins M A, Coen J, et al. A coupled atmosphere fire model: Convective feedback on fire-line dynamics[J]. Journal of Applied Meteorology and Climatology, 1996, 35(6): 875-901.
[11] Clark T L, Jenkins M A, Coen J L, et al. A coupled atmosphere-fire model: Role of the convective Froude number and dynamic fingering at the fireline[J]. International Journal of Wildland Fire, 1996, 6(4): 177-190.
[12] Fox-Hughes P. Springtime fire weather in Tasmania, Australia: Two case studies[J]. Weather and Forecasting, 2012, 27(2): 379-395.
[13] Coen J L, Cameron M, Michalakes J, et al. WRF-Fire: Coupled weather-wildland fire modeling with the weather research and forecasting model[J]. Journal of Applied Meteorology and Climatology, 2013, 52(1): 16-38.
[14] Coen J L, Schroeder W. The high park fire: Coupled weather-wildland fire model simulation of a windstorm ‐ driven wildfire in Colorado's Front Range[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(1): 131-146.
[15] Burgan R E. Behave: Fire behavior prediction and fuel modeling system, fuel subsystem[M]. US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, 1984: 1.
[16] Andrews P L, Bevins C D. BEHAVE fire modeling system: Redesign and expansion[J]. Fire Management Notes, 1999, 59(2): 16-19.
[17] 贺红士, 常禹, 胡远满, 等 . 森林可燃物及其管理的研究进展与展望[J]. 植物生态学报, 2010, 34(6): 741-752.
[18] Linn R R. A Transport model for prediction of wildfire behaviour[D]. Las Cruces: Department of Mechanical Engineering New Mexico State University, 1997.
[19] Linn R R, Harlow F H. Use of transport models for wildfire behavior simulations[R]. Las Cruces: Los Alamos National Lab(LANL), 1998.
[20] Reisner J M, Bossert J, Winterkamp J. Numerical simulations of two wildfire events using a combined modeling system (HIGRAD/BEHAVE) [R]. Las Cruces: Los Alamos National Lab(LANL), 1997.
[21] Reisner J M, Knoll D A, Mousseau V A, et al. New numerical approaches for coupled atmosphere-fire models[C]//Third symposium on fire and forest meteorology. Long Beach, CA, USA, 2000: 11-13.
[22] Bova A S, Mell W E, Hoffman C M. A comparison of level set and marker methods for the simulation of wildland fire front propagation[J]. International Journal of Wildland Fire, 2015, 25(2): 229-241.
[23] Hoffman C M, Canfield J, Linn R R, et al. Evaluating crown fire rate of spread predictions from physics-based models[J]. Fire Technology, 2016, 52(1): 221-237.
[24] Mell W, Jenkins M A, Gould J, et al. A physics-based approach to modelling grassland fires[J]. International Journal of Wildland Fire, 2007, 16(1): 1-22.
[25] McGrattan K, Hostikka S, McDermott R, et al. Fire dynamics simulator user's guide[J]. NIST Special Publication, 2013, 1019(6): 1-339.
[26] Mell M E, Jenkins M A, Gould J, et al. A physics based approach to modeling grassland fires[J]. International Journal of Wildland Fire, 2007, 16: 1-22.
[27] Menage D, Chetehouna D, Mell W. Numerical simulations of fire spread in Pinus pinaster needles fuel bed[J]. Journal of Physics: Conference Series, 2012, 395(1): 12011.
[28] Castle D, Mell W E, Miller F J. Examination of the Wildland-urban interface Fire Dynamics Simulator in modeling of laboratory-scale surface-to-crown fire transition[C]//Proceedings of the 8th US National Combustion Meeting. Park City, UT, USA, 2013, 4: 3710-3722.
[29] 王正非 . 山火初始蔓延速度测算法[J]. 山地研究, 1983(2): 44-53.
[30] 张晓婷, 刘培顺, 王学芳. 王正非林火蔓延模型改进研究[J]. 山东林业科技, 2020, 50(1): 7.
[31] 毛贤敏, 徐文兴 . 林火蔓延速度计算方法的研究[J]. 辽宁气象, 1991(1): 9-13.
[32] Clark T L, Coen J, Latham D. Description of a coupled atmosphere-fire model[J]. International Journal of Wildland Fire, 2004, 13(1): 49-64.
[33] Coen J L. Simulation of the Big Elk Fire using coupled atmosphere-fire modeling[J]. International Journal of Wildland Fire, 2005, 14(1): 49-59.
[34] Clark T L. A small-scale numerical model using a terrain following coordinate transformation[J]. Journal of Computational Physics, 1977, 24: 186-215.
[35] Clark T L. Numerical simulations with a three-dimensional cloud model: Lateral boundary condition experiments and multi-cellular severe storm simulations[J]. Journal of Atmospheric Sciences, 1976, 36: 2191-2215.
[36] Clark T L, Hall W D. Multi-domain simulations of the time dependent Navier Stokes equations: Benchmark error analyses of nesting procedures[J]. Journal of Computational Physics, 1991, 92: 456-481.
[37] Clark T L, Hall W D. On the design of smooth, conservative vertical grids for interactive grid nesting with stretching[J]. Journal of Applied Meteorology, 1996, 35: 1040-1046.
[38] Clark T L, Keller T, Coen J, et al. Terrain-induced Turbulence over Lantau Island: 7 June 1994 tropical storm russ case study[J]. Journal of the Atmospheric Sciences, 1997, 54: 1795-1814.
[39] Coen J L. Modeling wildland fires: A description of the Coupled Atmosphere-Wildland Fire Environment model(CAWFE) [M]. Boulder, Colorado, USA: National Center for Atmospheric Research, 2013, 38.
[40] Coen J L, Riggan P J. Simulation and thermal imaging of the 2006 Esperanza wildfire in southern California: Application of a coupled weather-wildland fire model[J]. International Journal of Wildland Fire, 2014, 23: 755-770.
[41] Coen J L, Stavros E N, Fites-Kaufman J A. Deconstruct‐ing the King megafire[J]. Ecological Applications, 2018, 28(6): 1565-1580.
[42] Coen J L, Schroeder W, Quayle B. The generation and forecast of extreme winds during the origin and progression of the 2017 Tubbs Fire[J]. Atmosphere, 2018, 9(12): 462.
[43] The Mesoscale and Microscale Meteorology Laboratory of NCAR. WRF general information[EB/OL]. [2023-06-01]. https://www.mmm.ucar.edu/wrf-model-general.
[44] Patton E G, Coen J L. WRF-Fire: A coupled atmosphere-fire module for WRF[C]//5th WRF/14th MM5 Users' Workshop. Boulder, CO, US: National Center for Atmospheric Research (NCAR), 2004: 221-223.
[45] Mandel J, Beezley J D, Kochanski A K. Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011[J]. Geoscientific Model Development, 2011, 4(3): 591-610.
[46] Skamarock W C, Klemp J B, Dudhia J, et al. A description of the advanced research WRF model version 4[J]. NCAR Technical Note, 2019, 145: 145.
[47] Rothermel R C. A mathematical model for predicting fire spread in wildland fuels[M]. Ogden, Utah, USA: Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture, 1972: 40.
[48] Peace M, Mattner T, Mills G, et al. Fire-modified meteorology in a coupled fire-atmosphere model[J]. Journal of Applied Meteorology and Climatology, 2015, 54(3): 704-720.
[49] Peace M, McCaw L W, Kepert J D, et al. WRF and SFIRE simulations of the Layman fuel reduction burn[J]. Australian Meteorological and Oceanographic Journal, 2015, 65(3/4): 301-317.
[50] Peace M, Mattner T, Mills G, et al. Coupled fire-atmosphere simulations of the Rocky River fire using WRF-SFIRE[J]. Journal of Applied Meteorology and Climatology, 2016, 55(5): 1151-1168.
[51] Kochanski A K, Jenkins M A, Mandel J, et al. Real time simulation of 2007 Santa Ana fires[J]. Forest Ecology & Management, 2013, 294: 136-149.
[52] Jordanov G, Beezley J, Dobrinkova N, et al. Simulation of the 2009 Harmanli fire (Bulgaria)[C]//Large-Scale Scientific Computing: 8th International Conference. Sozopol, Bulgaria: Lecture Notes in Computer Science, 2012: 291-298.
[53] Beezley J D, Kochanski A, Kondratenko V Y, et al. Simulation of the Meadow Creek fire using WRF-Fire[J]. Environmental Science, 2010, 1: 1478.
[54] Xue M, Droegemeier K K, Wong V. The Advanced Regional Prediction System (ARPS)-a multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification[J]. Meteorology and Atmospheric Physics, 2000, 75(3/4): 161-193.
[55] Xue M, Droegemeier K K, Wong V, et al. The Advanced Regional Prediction System (ARPS)—a multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications[J]. Meteorology and Atmospheric Physics, 2001, 76(3/4): 143-165.
[56] Ntaimo L, Zeigler B P, Vasconcelos M J, et al. Forest fire spread and suppression in DEVS[J]. Simulation, 2004, 80(10): 479-500.
[57] Hu X, Sun Y, Ntaimo L. DEVS-FIRE: Design and application of formal discrete event wildfire spread and suppression models[J]. Simulation, 2012, 88(3): 259-279.
[58] Xue H, Gu F, Hu X. Data assimilation using sequential Monte Carlo methods in wildfire spread simulation[J]. ACM Transactions on Modeling and Computer Simulation (TOMACS), 2012, 22(4): 1-25.
[59] Xue H, Hu X, Dahl N, et al. Post-frontal combustion heat modeling in DEVS-FIRE for coupled atmosphere-fire simulation[J]. Procedia Computer Science, 2012, 9: 302-311.
[60] Dahl N, Xue H, Hu X, et al. Coupled fire-atmosphere modeling of wildland fire spread using DEVS-FIRE and ARPS[J]. Natural Hazards, 2015, 77(2): 1013-1035.
[61] Lafore J P, Stein J, Asencio N, et al. The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations[J]. Annales Geophysicae, 1998, 16: 90-109.
[62] Filippi J B, Mallet V, Nader B. Evaluation of forest fire models on a large observation database[J]. Natural Hazards & Earth System Sciences, 2014, 14: 3077-3091.
[63] Balbi J H, Morandini F, Silvani X, et al. A physical model for wildland fires[J]. Combustion and Flame, 2009, 156(12): 2217-2230.
[64] Filippi J, Bosseur F, Mari C, et al. Coupled atmosphere-wildland fifire modelling[J]. Journal of Advances in Modeling Earth Systems, 2009, 1(4): 1-11.
[65] Filippi J B, Pialat X, Clements C B. Assessment of ForeFire/Meso-NH for wildland fire/atmosphere coupled simulation of the FireFlux experiment[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2633-2640.
[66] Filippi J B, Bosseur F, Mari C, et al. Simulation of a large wildfire in a coupled fire-atmosphere model[J]. Atmosphere, 2018, 9(6): 218.
[67] Clements C B, Zhong S, Goodrick S, et al. Observing the dynamics of wildland grass fires: FireFlux-a field validation experiment[J]. Bulletin of the American Meteorological Society, 2007, 88(9): 1369-1382.
[68] Clements C B, Zhong S, Bian X, et al. First observations of turbulence generated by grass fires[J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D22102.
[69] 田晓瑞, 舒立福, 王明玉 . 林火增长模型及应用软件[J]. 世界林业研究, 2012, 25(1): 25-29.
Outlines

/