Exclusive:Ecological priority and green development

Development potential and countermeasures of sub-seabed CO2 sequestration under the target of carbon peaking and carbon neutrality in China

  • SONG Shuang ,
  • HAN Jianbo ,
  • CHEN Hong ,
  • YANG Wenchao
Expand
  • National Marine Environmental Monitoring Center, Dalian 116023, China

Received date: 2022-04-12

  Revised date: 2022-10-24

  Online published: 2023-12-15

Abstract

In this article, the role of CO2 geological sub-seabed storage in the field of climate change is discussed, as well as the development trends of CO2 geological sub-seabed storage in China and abroad. Furthermore, countermeasures for the development of this technology are proposed. From the aspects of geological structure characteristics and coastal industrial layout, China has the advantages of developing CO2 geological sub-seabed storage. A large number of foreign engineering applications have proved the feasibility and effectiveness of the technology. In recent years, engineering practices have also been launched in China. CO2 geological sub-seabed storage has been subject to the jurisdiction of international conventions, and some developed countries have established special management systems. Combined with China's overall positioning for the development of CO2 geological sub-seabed storage based on carbon peak and carbon neutrality goals, the possible challenges in the future are elaborated and corresponding countermeasures are proposed.

Cite this article

SONG Shuang , HAN Jianbo , CHEN Hong , YANG Wenchao . Development potential and countermeasures of sub-seabed CO2 sequestration under the target of carbon peaking and carbon neutrality in China[J]. Science & Technology Review, 2023 , 41(22) : 30 -37 . DOI: 10.3981/j.issn.1000-7857.2023.22.005

References

[1] 联合国. 巴黎协定[R]. 巴黎: 联合国, 2015.
[2] 习近平. 在第七十五届联合国大会一般性辩论上的讲话[N]. 人民日报, 2020-09-23(3).
[3] 中华人民共和国生态环境部. 中国气候变化第三次国家信息通报及第二次两年更新报告核心内容解读[R/OL].
(2019-07-01)[2022-04-12]. http://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/t20190701_708248.shtml.
[4] 于贵瑞, 朱剑兴, 徐丽, 等. 中国生态系统碳汇功能提升的技术途径: 基于自然解决方案[J]. 中国科学院院刊, 2022, 37(4): 490-501.
[5] Metz B, Davidson O, Coninck D C, et al. IPCC Special report on carbon dioxide capture and storage[R]. United Kingdom and New York: Working Group III of the Intergovernmental Panel on Climate Change, 2005.
[6] International Energy Agency. Energy technology perspectives 2020[R]. Paris: IEA, 2020.
[7] 霍传林, 李官保, 潘建明, 等 . 我国开展 CO2海底封存的利弊分析和对策建议[J]. 海洋环境科学, 2014, 33(1): 138-143.
[8] 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)——中国 CCUS 路径研究[R]. 北京: 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心, 2021.
[9] 霍传林. 我国近海二氧化碳海底封存潜力评估和封存区域研究[D]. 大连: 大连海事大学环境科学与工程学院, 2014.
[10] 杨青林, 赵荣钦, 邢月, 等 . 中国城市碳排放的空间分布特征研究[J]. 环境经济研究, 2017, 2(1): 70-81.
[11] 生态环境部环境规划院 . 环境规划院气候中心建立中国首个高空间分辨率二氧化碳排放网格[EB/OL]. (2013-06-19) [2022-04-12]. http://www. caep. org. cn/zclm/qhbhyhjzcyjzx/zxdt_21888/201306/t20130619_627374.shtml.
[12] 王金南, 蔡博峰, 曹东, 等 . 中国 10 km 二氧化碳排放网格及空间特征分析[J]. 中国环境科学, 2014, 34(1): 1-6.
[13] 臧雅琼. 我国含油气盆地CO2地质封存潜力分析[D]. 北京: 中国地质大学(北京)地球科学与资源学院, 2013.
[14] 胡安俊, 罗妹, 李涵 . 沿海地区碳排放的时空格局、形成机理与实现碳达峰和碳中和的建议[J]. 城市, 2021(11): 59-69.
[15] 霍传林, 李官保, 张永华, 等 . 中国二氧化碳海底封存能力评估与风险控制技术预研究[EB/OL]. (2015-09-25) [2022-04-12]. https://kgo. ckcest. cn/kgo/detail/1006/dw_achievement/I3SrTVMnBU3gsc2fX71dbg%253D%253D.html.
[16] 周守为, 李清平, 朱海山, 等 . 海洋能源勘探开发技术现状与展望[J]. 中国工程科学, 2016, 18(2): 19-31.
[17] Tanaka Y, Sawada Y, Tanase D, et al. Tomakomai CCS demonstration project of Japan CO2 injection in progress[J]. Energy Procedia, 2017, 114: 5836-5846.
[18] International energy agency. CCUS around the world, Tomakomai CCS demonstration project[EB/OL]. (2020-04-15)[2022-04-12]. https://www.iea.org/reports/ccus-around-the-world/tomakomai-ccs-demonstration-project.
[19] EU Project ECO2 Office. ECO2-sub-seaed CO2 storage: Impact on marine ecosystems[R]. Germany: EU Project ECO2 Office, 2019.
[20] Berndt C, Blackford J C, Connelly D P, et al. STEMM-CCS project consortium strategies for environmental monitoring of marine carbon capture and storage: Research highlights[R]. United Kingdom: STEMM-CCS Project Consortium, 2020.
[21] Anita F, Schaap A, Achterberg E P, et al. Towards improved monitoring of offshore carbon storage: A real-world field experiment detecting a controlled sub-seafloor CO2 release[J]. International Journal of Greenhouse Gas Control, 2021, 106: 103237.
[22] Sverre Overå. Northern lights-receiving and permanent storage of CO2, part II-impact assessment[R]. Norway: Equinor, 2021.
[23] International Energy Agency. CCS around the world, northern lights[EB/OL]. (2020-04-15) [2022-04-12]. https://www.iea.org/reports/ccus-around-the-world/northern-lights.
[24] 韩文科, 杨玉峰, 苗韧, 等. 全球碳捕集与封存(CCS)技术的最新进展[J]. 宏观经济研究, 2009(12): 22-23.
[25] 徐鹏 . 国际法如何规制海洋倾废[J]. 中国生态文明, 2019(4): 43-48.
[26] Convention L. 1996 Protocol to the convention on the prevention of marine pollution by dumping of wastes and other matter 1972(London Protocol)[EB/OL]. (2022-04-25) [2022-04-12]. https://www. epa. gov/sites/default/files/2015-10/documents/lpamended2006.pdf.
[27] 全球碳捕集与封存研究院 . 全球碳捕集与封存现状: 2021[R]. 澳大利亚: 全球碳捕集与封存研究院, 2021.
[28] 邹乐乐, 张九天, 魏一鸣. 二氧化碳封存技术相关国际法规与政策的回顾与分析[J]. 中国能源, 2010, 32(4): 15-18.
[29] Department of Energy & Climate Change. CCS roadmap: The regulatory framework[R]. London: Department of Energy & Climate Change, 2012.
[30] Jiang K, Ashworth P, Zhang S, et al. China's carbon capture, utilization and storage (CCUS) policy: A critical review[J]. Renewable & Sustainable Energy Reviews, 2020, 119: 109601.
[31] 王金南, 刘兰翠 . 二氧化碳捕集、利用与封存(CCUS)项目的环境管理思考[J]. 低碳世界, 2013(1): 22-25.
[32] 环境保护部科技标准司. 二氧化碳捕集、利用与封存环境风险评估技术指南(试行)[Z]. 北京: 环境保护部办公厅, 2016.
[33] 生态环境部环境规划院 . 二氧化碳捕集利用与封存术语: T/CSES 41—2021[S]. 北京: 中国环境科学学会, 2021.
[34] 严刚, 郑逸璇, 王雪松, 等 . 基于重点行业/领域的我国碳排放达峰路径研究[J]. 环境科学研究, 2022, 35(2): 309-319.
[35] 李政, 陈思源, 董文娟, 等 . 碳约束条件下电力行业低碳转型路径研究[J]. 中国电机工程学报, 2021, 41(12): 3987-4001.
[36] 张利娜, 李辉, 程琳, 等 . 国外钢铁行业低碳技术发展概况[J]. 冶金经济与管理, 2018(5): 30-33.
[37] 薛华, 于景琦 . 碳捕集与封存作为我国石油行业发展机遇的探讨[J]. 油气田环境保护, 2018, 28(3): 4-7.
[38] 翟明洋, 林千果, 马丽, 等 . 电力行业碳捕集现状和发展趋势[J]. 环境科技, 2014, 27(2): 65-69.
Outlines

/