[1] 胡鞍钢.中国实现2030年前碳达峰目标及主要途径[J].北京工业大学学报(社会科学版), 2021, 21(3):1-15.
[2] Sui X, Zhang Y, Shao S, et al. Exergetic life cycle assessment of cement production process with waste heat power generation[J]. Energy Conversion and Management, 2014,88:684-692.
[3] Zhi X, An X, et al. Low carbon technology roadmap of China cement industry[J]. Journal of Sustainable CementBased Materials, 2023, 12(6):771-774.
[4] Naqi A, Jang J G. Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials:A review[J]. Sustainability, 2019, 11(02):1-18.
[5] 罗雷,郭旸旸,李寅,等.碳中和下水泥行业低碳发展技术路径及预测研究[J].环境科学研究, 2022, 35(6):1527-1537.
[6] 王勇,张萌,曹元辉,等.电石渣水泥生产对水泥行业碳减排的影响分析[J].水泥, 2022, 545(7):10-12.
[7] 刘丽芬,张文生,涂长江,等.利用硅钙渣部分替代石灰石生产硅酸盐水泥熟料的工业试验[J].水泥, 2015, 453(3):12-13.
[8] 刘晶,汪澜.应用替代原料减少水泥行业CO2排放实例分析[J].新型建筑材料, 2017, 44(7):97-99.
[9] 李鹏鹏,任强强,吕清刚,等.面向双碳的低碳水泥原料/燃料替代技术综述[J].洁净煤技术, 2022, 28(8):35-42.
[10] Gartner E, Sui T. Alternative cement clinkers[J]. Cement and Concrete Research, 2018, 114:27-39.
[11] 张宾,赵有强,林永权,等.水泥工业二氧化碳循环利用现状[J].中国水泥, 2021(4):75-81.
[12] Environment U N, Scrivener K L, John V M, et al. Ecoefficient cements:Potential economically viable solutions for a low-CO2 cement-based materials industry[J].Cement and Concrete Research, 2018, 114:2-26.
[13] Taylor-Lange S C, Lamon E L, Riding K A, et al. Calcined kaolinite-bentonite clay blends as supplementary cementitious materials[J]. Applied Clay Science, 2015,108(5):84-93.
[14] Martirena F, Scrivener K. Low carbon cement LC3 in Cuba:Ways to achieve a sustainable growth of cement production in emerging economies[M]. Dordrecht:Springer,2018.
[15] Habert G. Assessing the environmental impact of conventional and "green" cement production[J]. Eco-efficient Construction and Building Materials, 2014, 46:199-238.
[16] 姜乐乐,姜福香.碱激发胶凝材料的研究进展[J].上海涂料, 2021, 59(2):42-47.
[17] Chen L. Perforated cenospheres:A reactive internal curing agent for alkali activated slag mortars[J]. Cement&concrete composites, 2019, 104:35-44.
[18] Teh S H, Wiedmann T, Castel A, et al. Hybrid life cycle assessment of greenhouse gas emissions from cement,concrete and geopolymer concrete in Australia[J]. Journal of Cleaner Production, 2017, 152:312-320.
[19] 童国庆,张吾渝,高义婷,等.碱激发粉煤灰地聚物的力学性能及微观机制研究[J].材料导报, 2022, 36(4):129-134.
[20] Zhao H T, Liu Y, Li X Q, et al. Research progress on low-carbon technologies and assessment methods in cement industry[J]. Materials Science Forum, 2021, 103:933-943.
[21] Wang Q, Yan P Y, Han S. The influence of steel slag on the hydration of cement during the hydration process of complex binder[J].中国科学:技术科学(英文版), 2011,54(2):7.
[22] 魏丽颖,汪澜,颜碧兰.国内外低碳水泥的研究新进展[J].水泥, 2014, 450(12):1-3.
[23] Habert G, Billard C, Rossi P, et al. Cement production technology improvement compared to factor 4 objectives[J]. Cement&Concrete Research, 2010, 40(5):820-826.
[24] 张邦松.生物质秸秆作为替代燃料在水泥工厂的应用[J].中国水泥, 2023(2):56-58.
[25] 罗志斌,孙潇,高啸天,等.双碳背景下绿色氨能的应用场景及展望[J].南方能源建设, 2023, 10(3):47-54.
[26] Sakri A, Aouabed A, Nassour A, et al. Refuse-derived fuel potential production for co-combustion in the cement industry in Algeria[J]. Waste Management&Research, 2021, 39(9):1174-1184.
[27] 马旭,吴佳泺,李文祎.碳中和背景下我国水泥工业替代燃料发展的若干思考[J].新世纪水泥导报, 2022, 28(3):1-5.
[28] Ankaya S. Investigating the environmental impacts of alternative fuel usage in cement production:A life cycle approach[J]. Environment, Development and Sustainability:A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, 2020, 22:18-39.
[29] 崔源声,方艳欣,王硕.国外水泥工业替代燃料的最新发展趋势[J].水泥, 2018(1):9-12.
[30] Schneider M, Romer M, Tschudin M. Sustainable cement production-present and future[J]. Cement and Concrete Research, 2011,(7):41.
[31] Zheng C, Zhang H, Cai X, et al. Characteristics of CO2 and atmospheric pollutant emissions from China's cement industry:A life-cycle perspective[J]. Journal of Cleaner Production, 2020, 282(7):124533.1-124533.10.
[32] 佟庆,魏欣旸,秦旭映,等.我国水泥和钢铁行业突破性低碳技术研究[J].上海节能, 2020(5):380-385.
[33] Atmaca A, Kanoglu M. Reducing energy consumption of a raw mill in cement industry[J]. Energy, 2012, 42(1):261-269.
[34] 赵计辉,王栋民,王学光.现代水泥工业中高效节能的粉磨技术[J].中国粉体技术, 2013, 19(4):65-71.
[35] 夏凌风,郭珍妮.水泥行业碳减排途径及贡献度探讨[J].中国水泥, 2022(11):14-19.
[36] 陈钦松.立磨水泥终粉磨应用实践及制成水泥质量[J].中国水泥, 2022, 242(7):81-83.
[37] 陈忆红,郭瑞广,李伟洋.基于水泥联合粉磨系统节能降耗途径的分析[J].散装水泥, 2020, 208(5):5-7.
[38] 殷昭波.水泥熟料烧成系统电耗分析探讨[J].水泥工程, 2020, 198(5):10-12.
[39] 郭君毅.水泥生产工艺节能技术探讨[J].四川水泥,2021(6):13-14.
[40] "高固气比水泥悬浮预热分解技术" 入选第四批国家重点节能技术推广[J].建材发展导向, 2012, 10(1):81.
[41] 江旭昌.浅论水泥回转窑窑型的发展[J].新世纪水泥导报, 2020, 26(1):5-17.
[42] 张宪合,张长春,刘传路.低氮燃烧脱硝技术成功改造案例分析[J].中国水泥, 2020, 216(5):79-81.
[43] Pieper C, Wirtz S, Schaefer S, et al. Numerical investigation of the impact of coating layers on RDF combustion and clinker properties in rotary cement kilns[J]. Fuel,2021, 283:118951.1-118951.14.
[44] 华俊.水泥熟料篦式冷却机的技术发展和应用研究[J].四川建材, 2022, 48(9):182-183.
[45] 钟永超,李帅波,康宇,等.第三代篦冷机整体更换为第四代中置辊破冷却机的实践[J].水泥, 2020(8):47-49.
[46] 李丹,郑伟,刘彦伟. "双碳" 背景下水泥行业发展之路[J].中国水泥, 2022,(5):82-84.
[47] 冯金生.关于水泥窑纯低温余热发电技术的探究[J].居舍, 2018(35):165.
[48] 朱刚.碳中和目标下的水泥工业低碳技术研究[J].水泥工程, 2022(4):1-4.
[49] Yan X H, Jing S H. Research on key technologies of cementintelligent control cloud platform client[J]. DEStech Transactions on Engineering and Technology Research,2018, 42(9):56-71.
[50] Guzman M P, Rubia B N, Peris P M, et al. Methodological development for the optimisation of electricity cost in cement factories:The use of artificial intelligence in process variables[J]. Electrical engineering, 2022, 3:104-119.
[51] Tan C, Yu X, Guan Y R. A technology-driven pathway to net-zero carbon emissions for China's cement industry[J]. Applied Energy, 2022, 325:119804.
[52] 付立娟,杨勇,卢静华.水泥工业碳达峰与碳中和前景分析[J].中国建材科技, 2021, 30(4):80-84.
[53] 杨晴,孙云琪,周荷雯,等.我国典型行业碳捕集利用与封存技术研究综述[J].华中科技大学学报(自然科学版), 2023, 51(01):101-110.
[54] 任勇.碳中和目标下海螺水泥减排二氧化碳的实践[J].新世纪水泥导报, 2021, 27(2):6-8.
[55] Fytlanos G, Grimstvedt A, Hanna K, et al. Corrosion and degradation in MEA based post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control,2016, 46:48-56.
[56] 孙立勋,韩力.中国水泥行业CCUS技术库的构建与分析[J].四川水泥, 2020(1):4-5.
[57] Dean C C, Dugwell D, Fennell P S. Investigation into potential synergy between power generation, cement manufacture and CO2 abatement using the calcium looping cycle[J]. Energy&Environmental Science, 2011, 4:2050-2053.
[58] 缪昌文,穆松. "双碳" 目标下水泥基材料绿色低碳路径思考与展望[J].未来城市设计与运营, 2022(2):10-16.
[59] 高旭东,范永斌,王郁涛.水泥行业 "十三五" 科技发展报告[J].中国水泥, 2021(07):28-39.
[60] 朱兵兵,郑志龙,邹兴芳.水泥企业碳减排技术路径浅析[J].水泥, 2021(10):4-5.