[1] Abiodun O I, Jantan A, Omolara A E, et al. State-of-theart in artificial neural network applications:A survey[J]. Heliyon, 2018, 4(11):e00938.
[2] Tavanaei A, Ghodrati M, Kheradpisheh S R, et al. Deep learning in spiking neural networks[J]. Neural Networks, 2019, 111:47-63.
[3] Le Cun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
[4] Dario A, Danny H. AI and Compute[EB/OL]. (2018-05-16)[2022-04-28]. https://openai.com/blog/ai-and-compute/.
[5] Moore G E. Cramming more components onto integrated circuits[J]. Proceedings of the IEEE, 1998, 86(1):82-85.
[6] Patterson D. 50 Years of computer architecture:From the mainframe CPU to the domain-specific tpu and the open RISC-V instruction set[C]//2018 IEEE International Solid -State Circuits Conference(ISSCC). Piscataway, NJ:IEEE, 2018:27-31.
[7] Lundstrom M. Moore's Law forever[J]. Science, 2003, 299(5604):210-211.
[8] Chau R, Doyle B, Datta S, et al. Integrated nanoelectronics for the future[J]. Nature Materials, 2007, 6(11):810-812.
[9] Leiserson C E, Thompson N C, Emer J S, et al. There's plenty of room at the Top:What will drive computer performance after Moore's law[J]. Science, 2020, 368(6495):eaam9744.
[10] Salahuddin S, Ni K, Datta S. The era of hyper-scaling in electronics[J]. Nature Electronics, 2018, 1(8):442-450.
[11] McKee S A. Reflections on the memory wall[C]//Proceedings of the 1st conference on Computing frontiers. New York:Association for Computing Machinery, 2004:162.
[12] Wong H-S P, Salahuddin S. Memory leads the way to better computing[J]. Nature Nanotechnology, 2015, 10(3):191-194.
[13] Qureshi M K, Gurumurthi S, Rajendran B. Phase change memory:From devices to systems[J]. Synthesis Lectures on Computer Architecture, 2011, 6(4):1-134.
[14] Furber S. Large-scale neuromorphic computing systems[J]. Journal of Neural Engineering, 2016, 13(5):051001.
[15] Indiveri G, Liu S C. Memory and information processing in neuromorphic systems[J]. Proceedings of the IEEE, 2015, 103(8):1379-1397.
[16] Hu M, Strachan J P, Li Z, et al. Dot-product engine as computing memory to accelerate machine learning algorithms[C]//2016 17th International Symposium on Quality Electronic Design (ISQED). Piscataway, NJ:IEEE, 2016:374-379.
[17] Chua L. Memristor-The missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5):507-519.
[18] Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191):80-83.
[19] Zhao M R, Wu H Q, Gao B, et al. Investigation of statistical retention of filamentary analog RRAM for neuromophic computing[C]//2017 IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:IEEE, 2017:39.4.1-39.4.4.
[20] Wu Y, Yu S M, Guan X M, et al. Recent progress of resistive switching random access memory (RRAM)[C]//2012 IEEE Silicon Nanoelectronics Workshop (SNW). Piscataway, NJ:IEEE, 2012:1-4.
[21] Prezioso M, Merrikh-Bayat F, Hoskins B D, et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors[J]. Nature, 2015, 521(7550):61-64.
[22] Ielmini D, Wang Z, Liu Y. Brain-inspired computing via memory device physics[J]. APL Materials, 2021, 9(5):050702.
[23] Kumar S, Wang X, Strachan J P, et al. Dynamical memristors for higher-complexity neuromorphic computing[J]. Nature Reviews Materials, 2022, 7(7):575-591.
[24] Li X Y, Zhong Y N, Chen H, et al. A memristors-based dendritic neuron for high-efficiency spatial-temporal information processing[J]. Advanced Materials, 2022, doi:10.1002/adma.202203684.
[25] Li X Y, Tang J S, Zhang Q T, et al. Power-efficient neural network with artificial dendrites[J]. Nature Nanotechnology, 2020, 15(9):776-782.
[26] Sun W, Gao B, Chi M F, et al. Understanding memristive switching via in situ characterization and device modeling[J]. Nature Communications, 2019, 10(1):3453.
[27] Xu X X, Lv H B, Liu H T, et al. Superior retention of low-resistance state in conductive bridge random access memory with single filament formation[J]. IEEE Electron Device Letters, 2015, 36(2):129-131.
[28] Bersuker G, Veksler D, Nminibapiel D M, et al. Toward reliable RRAM performance:Macro-and micro-analysis of operation processes[J]. Journal of Computational Electronics, 2017, 16(4):1085-1094.
[29] Degraeve R, Fantini A, Gorine G, et al. Quantitative model for post-program instabilities in filamentary RRAM[C]//2016 IEEE International Reliability Physics Symposium (IRPS). Piscataway, NJ:IEEE, 2016:6C-1-1-6C-1-7.
[30] Gao B, Wu H Q, Wu W, et al. Modeling disorder effect of the oxygen vacancy distribution in filamentary analog RRAM for neuromorphic computing[C]//2017 IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:IEEE, 2017:4.4.1-4.4.4.
[31] Zhao Y D, Huang P, Chen Z, et al. Modeling and optimization of bilayered TaOx RRAM based on defect evolution and phase transition effects[J]. IEEE Transactions on Electron Devices, 2016, 63(4):1524-1532.
[32] Huang P, Liu X Y, Li W H, et al. A physical based analytic model of RRAM operation for circuit simulation[C]//2012 International Electron Devices Meeting. Piscataway, NJ:IEEE, 2012:26.6.1-26.6.4.
[33] Wong H-S P, Lee H Y, Yu S, et al. Metal-oxide RRAM[J]. Proceedings of the IEEE, 2012, 100(6):1951-1970.
[34] Misha S H, Tamanna N, Woo J, et al. Effect of nitrogen doping on variability of TaOx -RRAM for low-power 3-bit MLC applications[J]. ECS Solid State Letters, 2015, 4(3):25.
[35] Wu W, Wu H Q, Gao B, et al. Improving analog switching in HfO2-based resistive memory with a thermal enhanced layer[J]. IEEE Electron Device Letters, 2017, 38(8):1019-1022.
[36] Yao P, Wu H Q, Gao B, et al. Fully hardware-implemented memristor convolutional neural network[J]. Nature, 2020, 577(7792):641-646.
[37] Cai F, Correll J M, Lee S H, et al. A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations[J]. Nature Electronics, 2019, 2(7):290-299.
[38] Serb A, Bill J, Khiat A, et al. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses[J]. Nature Communications, 2016, 7(1):12611.
[39] Ahn M, Park Y, Lee S H, et al. Memristors based on (Zr, Hf, Nb, Ta, Mo, W) high-entropy oxides[J]. Advanced Electronic Materials, 2021, 7(5):2001258.
[40] Islam R, Li H, Chen P Y, et al. Device and materials requirements for neuromorphic computing[J]. Journal of Physics D:Applied Physics, 2019, 52(11):113001.
[41] Valov I, Waser R, Jameson J R, et al. Electrochemical metallization memories-fundamentals, applications, prospects[J]. Nanotechnology, 2011, 22(25):254003.
[42] Xia Q F, Yang J J. Memristive crossbar arrays for braininspired computing[J]. Nature Materials, 2019, 18(4):309-323.
[43] Lin Q, Li Y, Xu M, et al. Dual-Layer selector with excellent performance for cross-point memory applications[J]. IEEE Electron Device Letters, 2018, 39(4):496-499.
[44] Belmonte A, Reale G, Fantini A, et al. Effect of the switching layer on CBRAM reliability and benchmarking against OxRAM devices[J]. Solid-State Electronics, 2021, 184:108058.
[45] Hsu C-L, Saleem A, Singh A, et al. Enhanced linearity in CBRAM synapse by post oxide deposition annealing for neuromorphic computing applications[J]. IEEE Transactions on Electron Devices, 2021, 68(11):5578-5584.
[46] Raoux S, Xiong F, Wuttig M, et al. Phase change materials and phase change memory[J]. MRS Bulletin, 2014, 39(8):703-710.
[47] Wong H-S P, Raoux S, Kim S, et al. Phase change memory[J]. Proceedings of the IEEE, 2010, 98(12):2201-2227.
[48] Li Y B, Wang Z R, Midya R, et al. Review of memristor devices in neuromorphic computing:Materials sciences and device challenges[J]. Journal of Physics D:Applied Physics, 2018, 51(50):503002.
[49] Ahn C, Fong S W, Kim Y, et al. Energy-efficient phasechange memory with graphene as a thermal barrier[J]. Nano Letters, 2015, 15(10):6809-6814.
[50] Lacaita A L, Redaelli A. The race of phase change memories to nanoscale storage and applications[J]. Microelectronic Engineering, 2013, 109:351-356.
[51] Boniardi M, Ielmini D, Lavizzari S, et al. Statistics of resistance drift due to structural relaxation in phasechange memory arrays[J]. IEEE Transactions on Electron Devices, 2010, 57(10):2690-2696.
[52] Ding K Y, Wang J J, Zhou Y X, et al. Phase-change heterostructure enables ultralow noise and drift for memory operation[J]. Science, 2019, 366(6462):210-215.
[53] Park J H, Kim S W, Kim J H, et al. Enhancement of a cyclic endurance of phase change memory by application of a high-density C15(Ge21Sb36Te43) film[J]. AIP Advances, 2016, 6(2):025013.
[54] Na T, Kang S H, Jung S O. STT-MRAM sensing:A review[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2021, 68(1):12-18.
[55] Kawahara T, Ito K, Takemura R, et al. Spin-transfer torque RAM technology:Review and prospect[J]. Microelectronics Reliability, 2012, 52(4):613-627.
[56] Worledge D C. Spin-Transfer-Torque MRAM:The next revolution in memory[C]//2022 IEEE International Memory Workshop (IMW). Piscataway, NJ:IEEE, 2022:1-4.
[57] Zhang K, Cao K H, Zhang Y, et al. Rectified tunnel magnetoresistance device with high on/off ratio for inmemory computing[J]. IEEE Electron Device Letters, 2020, 41(6):928-931.
[58] Garello K, Yasin F, Kar G S. Spin-Orbit torque MRAM for ultrafast embedded memories:From fundamentals to large scale technology integration[C]//2019 IEEE 11th International Memory Workshop (IMW). Piscataway, NJ:IEEE, 2019:1-4.
[59] Weisheit M, Fähler S, Marty A, et al. Electric field-induced modification of magnetism in thin-film ferromagnets[J]. Science, 2007, 315(5810):349-351.
[60] Nozaki T, Yamamoto T, Miwa S, et al. Recent progress in the voltage-controlled magnetic anisotropy effect and the challenges faced in developing voltage-torque MRAM[J]. Micromachines, 2019, 10(5):327.
[61] Chanthbouala A, Garcia V, Cherifi R O, et al. A ferroelectric memristor[J]. Nature Materials, 2012, 11(10):860-864.
[62] Schroeder U, Park M H, Mikolajick T, et al. The fundamentals and applications of ferroelectric HfO2[J]. Nature Reviews Materials, 2022, 7(3):653-669.
[63] Fuller E J, Keene S T, Melianas A, et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing[J]. Science, 2019, 364(6440):570-574.
[64] Valasek J. Piezo-Electric and allied phenomena in rochelle salt[J]. Physical Review, 1921, 17(4):475-481.
[65] Böscke T S, Müller J, Bräuhaus D, et al. Ferroelectricity in hafnium oxide thin films[J]. Applied Physics Letters, 2011, 99(10):102903.
[66] Fujii S, Kamimuta Y, Ino T, et al. First demonstration and performance improvement of ferroelectric HfO2-based resistive switch with low operation current and intrinsic diode property[C]//2016 IEEE Symposium on VLSI Technology. Piscataway, NJ:IEEE, 2016:1-2.
[67] Max B, Hoffmann M, Slesazeck S, et al. Ferroelectric tunnel junctions based on ferroelectric-dielectric Hf0.5Zr0.5O2/A12O3 capacitor stacks[C]//2018 48th European Solid-State Device Research Conference (ESSDERC). Piscataway, NJ:IEEE, 2018:142-145.
[68] Yu S, Hur J, Luo Y C, et al. Ferroelectric HfO2-based synaptic devices:Recent trends and prospects[J]. Semiconductor Science and Technology, 2021, 36(10):104001.
[69] Chang M F, Shen S J, Liu C C, et al. An offset-tolerant fast-random-read current-sampling-based sense amplifier for small-cell-current nonvolatile memory[J]. IEEE Journal of Solid-State Circuits, 2013, 48(3):864-877.
[70] Luo Y C, Hur J, Yu S M. Ferroelectric tunnel junction based crossbar array design for neuro-inspired computing[J]. IEEE Transactions on Nanotechnology, 2021, 20:243-247.
[71] IEEE international roadmap for devices and systems[EB/OL].[2022-10-13]. https://irds.ieee.org/.
[72] Liu Q, Gao B, Yao P, et al. A fully integrated analog ReRAM based 78.4TOPS/W compute-in-memory chip with fully parallel MAC computing[C]//2020 IEEE International Solid-State Circuits Conference. Piscataway, NJ:IEEE, 2020:500-502.
[73] Wang L F, Ye W, Lai J R, et al. A 14 nm 100 Kb 2T1R transpose RRAM with >150X resistance ratio enhancement and 27.95% reduction on energy-latency product using low-power near threshold read operation and fast data-line current stabling scheme[C]//2021 Symposium on VLSI Technology. Piscataway, NJ:IEEE, 2021:1-2.
[74] Wu T F, Le B Q, Radway R, et al. A 43pJ/cycle nonvolatile microcontroller with 4.7μs shutdown/wake-up integrating 2.3-bit/cell resistive RAM and resilience techniques[C]//2019 IEEE International Solid-State Circuits Conference. Piscataway, NJ:IEEE, 2019:226-228.
[75] Jiang H, Han L L, Lin P, et al. Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor[J]. Scientific Reports, 2016, 6(1):28525.
[76] Golonzka O, Arslan U, Bai P, et al. Non-Volatile RRAM embedded into 22FFL FinFET technology[C]//2019 Symposium on VLSI Technology. Piscataway, NJ:IEEE, 2019:T230-T231.
[77] Ho C, Chang S-C, Huang C-Y, et al. Integrated HfO2-RRAM to achieve highly reliable, greener, faster, costeffective, and scaled devices[C]//2017 IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:IEEE, 2017:2.6.1-2.6.4.
[78] Yan X B, Qin C Y, Lu C, et al. Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing[J]. ACS Applied Materials & Interfaces, 2019, 11(51):48029-48038.
[79] Sun Y, Xu H, Liu S, et al. Short-Term and long-term plasticity mimicked in low-voltage Ag/GeSe/TiN electronic synapse[J]. IEEE Electron Device Letters, 2018, 39(4):492-495.
[80] Li J, Xu H, Sun S Y, et al. In situ learning in hardware compatible multilayer memristive spiking neural network[J]. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14(2):448-461.
[81] Yu J, Xu X X, Gong T C, et al. Suppression of filament overgrowth in conductive bridge random access memory by Ta2O5/TaOx bi-layer structure[J]. Nanoscale Research Letters, 2019, 14(1):111.
[82] Xu R, Jang H, Lee M-H, et al. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV[J]. Nano Letters, 2019, 19(4):2411-2417.
[83] Jang H, Liu C, Hinton H, et al. An atomically thin optoelectronic machine vision processor[J]. Advanced Materials, 2020, 32(36):2002431.
[84] Lim S, Sung C, Kim H, et al. Improved synapse device with MLC and conductance linearity using quantized conduction for neuromorphic systems[J]. IEEE Electron Device Letters, 2018, 39(2):312-315.
[85] He M Z, He D, Qian H, et al. Ultra-Low program current and multilevel phase change memory for high-density storage achieved by a low-current SET pre-operation[J]. IEEE Electron Device Letters, 2019, 40(10):1595-1598.
[86] Jia S, Li H, Gotoh T, et al. Ultrahigh drive current and large selectivity in GeS selector[J]. Nature Communications, 2020, 11(1):4636.
[87] Navarro G, Sabbione C, Bernard M, et al. Highly Sbrich Ge-Sb-Te engineering in 4 Kb phase-change memory for high speed and high material stability under cycling[C]//2019 IEEE 11th International Memory Workshop (IMW). Piscataway, NJ:IEEE, 2019:1-4.
[88] Jiang Y H, Zhou H Y, Zhu D Q, et al. Computational study for spin-orbit torque magnetic random access memory[C]//2021 IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:IEEE, 2021:8.2.1-8.2.4.
[89] Yang M Y, Deng Y C, Wu Z H, et al. Spin logic devices via electric field controlled magnetization reversal by spin-orbit torque[J]. IEEE Electron Device Letters, 2019, 40(9):1554-1557.
[90] Song Y J, Lee J H, Han S H, et al. Demonstration of highly manufacturable STT-MRAM embedded in 28 nm logic[C]//2018 IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:IEEE, 2018:18.2.1-18.2.4.
[91] Jung S, Lee H, Myung S, et al. A crossbar array of magnetoresistive memory devices for in-memory computing[J]. Nature, 2022, 601(7892):211-216.
[92] Chang T-C, Chiu Y-C, Lee C-Y, et al. A 22 nm 1 Mb 1024 b-read and near-memory-computing dual-mode STT-MRAM macro with 42.6 GB/s read bandwidth for security-aware mobile devices[C]//2020 IEEE International Solid-State Circuits Conference. Piscataway, NJ:IEEE, 2020:224-226.
[93] Xi Z N, Ruan J J, Li C, et al. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier[J]. Nature Communications, 2017, 8(1):15217.
[94] Yu J, Li Y, Sun W X, et al. Energy efficient and robust reservoir computing system using ultrathin (3.5 nm) ferroelectric tunneling junctions for temporal data learning[C]//2021 Symposium on VLSI Technology. Piscataway, NJ:IEEE, 2021:1-2.
[95] Seo M, Kang M-H, Jeon S-B, et al. First demonstration of a logic-process compatible junctionless ferroelectric FinFET synapse for neuromorphic applications[J]. IEEE Electron Device Letters, 2018, 39(9):1445-1448.
[96] Chung W, Si M, Ye P D. First demonstration of Ge ferroelectric nanowire FET as synaptic device for online learning in neural network with high number of conductance state and Gmax/Gmin[C]//2018 IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:IEEE, 2018:15.2.1-15.2.4.
[97] Boyn S, Girod S, Garcia V, et al. High-performance ferroelectric memory based on fully patterned tunnel junctions[J]. Applied Physics Letters, 2014, 104(5):052909.
[98] Ojha V K, Abraham A, Snášel V. Metaheuristic design of feedforward neural networks:A review of two decades of research[J]. Engineering Applications of Artificial Intelligence, 2017, 60:97-116.
[99] Burr G W, Shelby R M, Sidler S, et al. Experimental demonstration and tolerancing of a large-scale neural network (165000 synapses) using phase-change memory as the synaptic weight element[J]. IEEE Transactions on Electron Devices, 2015, 62(11):3498-3507.
[100] Li C, Wang Z, Rao M, et al. Long short-term memory networks in memristor crossbar arrays[J]. Nature Machine Intelligence, 2019, 1(1):49-57.
[101] Tanaka G, Yamane T, Héroux J B, et al. Recent advances in physical reservoir computing:A review[J]. Neural Networks, 2019, 115:100-123.
[102] Moon J, Ma W, Shin J H, et al. Temporal data classification and forecasting using a memristor-based reservoir computing system[J]. Nature Electronics, 2019, 2(10):480-487.
[103] Gui J, Sun Z N, Wen Y G, et al. A review on generative adversarial networks:Algorithms, theory, and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, DOI:10.1109/TKDE.2021.3130191)
[104] Lin Y D, Wu H Q, Gao B, et al. Demonstration of generative adversarial network by intrinsic random noises of analog RRAM devices[C]//2018 IEEE International Electron Devices Meeting (IED M). Piscataway, NJ:IEEE, 2018:3.4.1-3.4.4.
[105] Yao P, Wu H Q, Gao B, et al. Face classification using electronic synapses[J]. Nature Communications, 2017, 8(1):1-8.
[106] Mochida R, Kouno K, Hayata Y, et al. A 4M synapses integrated analog ReRAM based 66.5 TOPS/W neuralnetwork processor with cell current controlled writing and flexible network architecture[C]//2018 IEEE Symposium on VLSI Technology. Piscataway, NJ:IEEE, 2018:175-176.
[107] Ishii M, Kim S, Lewis S, et al. On-chip trainable 1.4M 6T2R PCM synaptic array with 1.6K stochastic LIF neurons for spiking RBM[C]//2019 IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:IEEE, 2019:14.2.1-14.2.4.
[108] Singh S, Sarma A, Jao N, et al. NEBULA:A neuromorphic spin-based ultra-low power architecture for SNNs and ANNs[C]//2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). Piscataway, NJ:IEEE, 2020:363-376.
[109] Laguna A F, Yin X, Reis D, et al. Ferroelectric FET based in-memory computing for few-shot learning[C]//Proceedings of the 2019 on Great Lakes Symposium on VLSI. New York:Association for Computing Machinery, 2019:373-378.
[110] Li C, Hu M, Li Y N, et al. Analogue signal and image processing with large memristor crossbars[J]. Nature Electronics, 2018, 1(1):52-59.
[111] Zhao H, Liu W Z, Tang J S, et al. Memristor-based signal processing for edge computing[J]. Tsinghua Science and Technology, 2022, 27(3):455-471.
[112] Zhao H, Liu Z W, Tang J S, et al. Implementation of discrete Fourier transform using RRAM arrays with quasi-analog mapping for high-fidelity medical image reconstruction[C]//2021 IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:IEEE, 2021:12.4.1-12.4.4.
[113] Zhang B, Uysal N, Ewetz R. Computational restructuring:Rethinking image processing using memristor crossbar arrays[C]//2020 Design, Automation & Test in Europe Conference & Exhibition (DATE). Piscataway, NJ:IEEE, 2020:1594-1597.
[114] Le Gallo M, Sebastian A, Cherubini G, et al. Compressed sensing with approximate message passing using in-memory computing[J]. IEEE Transactions on Electron Devices, 2018, 65(10):4304-4312.
[115] Choi S, Sheridan P, Lu W D. Data clustering using memristor networks[J]. Scientific Reports, 2015, 5(1):10492.
[116] Choi S, Shin J H, Lee J, et al. Experimental demonstration of feature extraction and dimensionality reduction using memristor networks[J]. Nano Letters, 2017, 17(5):3113-3118.
[117] Jiang Y N, Kang J F, Wang X N. RRAM-based parallel computing architecture using k-nearest neighbor classification for pattern recognition[J]. Scientific Reports, 2017, 7(1):45233.
[118] Liu C, Han R Z, Zhang S, et al. A high accuracy and robust machine learning network for pattern recognition based on binary RRAM devices[C]//2017 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA). Piscataway, NJ:IEEE, 2017:1-2.
[119] Liang X P, Zhong Y N, Tang J S, et al. Rotating neurons for all-analog implementation of cyclic reservoir computing[J]. Nature Communications, 2022, 13(1):1549.
[120] Fu Y Y, Zhou Y, Huang X D, et al. Forming-free and annealing-free V/VOx/HfWOx/Pt device exhibiting reconfigurable threshold and resistive switching with high speed (<30 ns) and high endurance (>1012/>1010)[C]//2021 IEEE International Electron Devices Meeting (IEDM). Piscataway, NJ:IEEE, 2021:12.6.1-12.6.4.
[121] Christensen D V, Dittmann R, Linares-Barranco B, et al. 2022 roadmap on neuromorphic computing and engineering[J]. Neuromorphic Computing and Engineering, 2022, 2(2):022501.