Reviews

Research progress of imine covalent organic frameworks

  • CHU Zhengkun ,
  • LIU Jie
Expand
  • School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China

Received date: 2022-08-19

  Revised date: 2023-02-03

  Online published: 2024-04-15

Abstract

Imine Covalent Organic Frameworks (Imine COFs) are a kind of porous organic crystal materials formed by the condensation of aromatic amines and aromatic aldehydes according to the Schiff-base reaction principle. Imine COFs have become the most widely studied COFs materials in recent years due to their advantages of large specific surface area, high porosity, easy functionalization and strong designability. The latest research progress of Imine COFs materials in recent years is reviewed from the aspects of design, synthesis methods and applications. Based on the current status of this field, the existing difficulties in the progress of novel COFs material construction and industrial applications are outlined, and future research trends are proposed, including optimizing the synthesis methods, exploring the conditions for industrial applications, developing multifunctional composite nano-Imine-COFs, and emphasizing the fundamentals of the materials' physicochemical properties, in order to provide ideas for the in-depth research and practical application of Imine COFs materials.

Cite this article

CHU Zhengkun , LIU Jie . Research progress of imine covalent organic frameworks[J]. Science & Technology Review, 2024 , 42(2) : 67 -78 . DOI: 10.3981/j.issn.1000-7857.2024.02.007

References

[1] Kricheldorf H R. Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides[J]. Angewandte Chemie-International Edition, 2006, 45(35):5752-5784.
[2] Côté A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751):1166-1170.
[3] Lanni L M, Tilford R W, Bharathy M, et al. Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks[J]. Journal of the American Chemical Society, 2011, 133(35):13975-13983.
[4] Smith B J, Overholts A C, Hwang N, et al. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks[J]. Chemical Communications, 2016, 52(18):3690-3693.
[5] Guo J, Xu Y, Jin S, et al. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized pi clouds[J]. Nature Communications, 2013, 4(1):2736-2743.
[6] Segura J, Mancheño M, Zamora F. Covalent organic frameworks based on Schiff-base chemistry:Synthesis, properties and potential applications[J]. Chemical Society Reviews, 2016, 45(20):5635-5671.
[7] Colson J, Dichtel W. Rationally synthesized two-dimensional polymers[J]. Nature Chemistry, 2013, 5(6):453-465.
[8] Kaderi H, Hunt J, Cortés J, et al. Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007, 316(5822):268-272.
[9] Geng K, He T, Liu R, et al. Covalent organic frameworks:Design, synthesis, and functions[J]. Chemical Reviews, 2020, 120(16):8814-8933.
[10] Kouwer P H, Koepf M, Le Sage V, et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels[J]. Nature, 2013, 493(7434):651-655.
[11] Ding S Y, Gao J, Wang Q, et al. Construction of covalent organic framework for catalysis:Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction[J]. Journal of the American Chemical Society, 2011, 133(49):19816-19822.
[12] Wan S, Gándara F, Asano A, et al. Covalent organic frameworks with high charge carrier mobility[J]. Chemistry of Materials, 2011, 23(18):4094-4097.
[13] Kandambeth S, Mallick A, Lukose B, et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route[J]. Journal of the American Chemical Society, 2012, 134(48):19524-19527.
[14] Xu H S, Ding S Y, An W K, et al. Constructing crystalline covalent organic frameworks from chiral building blocks[J]. Journal of the American Chemical Society, 2016, 138(36):11489-11492.
[15] Zhou T Y, Xu S Q, Wen Q, et al. One-step construction of two different kinds of pores in a 2D covalent organic framework[J]. Journal of the American Chemical Society, 2014, 136(45):15885-15888.
[16] Tian Y, Xu S Q, Qian C, et al. Two-dimensional dualpore covalent organic frameworks obtained from the combination of two D 2h symmetrical building blocks[J]. Chemical Communications, 2016, 52(78):11704-11707.
[17] Pang Z F, Xu S Q, Zhou T Y, et al. Construction of covalent organic frameworks bearing three different kinds of pores through the heterostructural mixed linker strategy[J]. Journal of the American Chemical Society, 2016, 138(14):4710-4713.
[18] Jhulki S, Evans A M, Hao X L, et al. Humidity sensing through reversible isomerization of a covalent organic framework[J]. Journal of the American Chemical Society, 2020, 142(2):783-791.
[19] Uribe-Romo F J, Hunt J R, Furukawa H, et al. A crystalline imine-linked 3D porous covalent organic framework[J]. Journal of the American Chemical Society, 2009, 131(13):4570-4571.
[20] Zhang Y B, Su J, Furukawa H, et al. Single-crystal structure of a covalent organic framework[J]. Journal of the American Chemical Society, 2013, 135(44):16336-16339.
[21] Fang Q, Gu S, Zheng J, et al. 3D microporous basefunctionalized covalent organic frameworks for size-selective catalysis[J]. Angewandte Chemie International Edition, 2014, 53(11):2878-2882.
[22] Lin G, Ding H, Yuan D, et al. A pyrene-based, fluorescent three-dimensional covalent organic framework[J]. Journal of the American Chemical Society, 2016, 138(10):3302-3305.
[23] Ma T, Kapustin E A, Yin S X, et al. Single-crystal xray diffraction structures of covalent organic frameworks[J]. Science, 2018, 361(6397):48-52.
[24] Li Y, Chen Q, Xu T, et al. De novo design and facile synthesis of 2D covalent organic frameworks:A two-inone strategy[J]. Journal of the American Chemical Society, 2019, 141(35):13822-13828.
[25] Ding S Y, Wang W. Covalent organic frameworks (COFs):From design to applications[J]. Chemical Society Reviews, 2013, 42(2):548-568.
[26] Wei H, Chai S, Hu N, et al. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity[J]. Chemical Communications, 2015, 51(61):12178-12181.
[27] Campbell N L, Clowes R, Ritchie L K, et al. Rapid microwave synthesis and purification of porous covalent organic frameworks[J]. Chemistry of Materials, 2009, 21(2):204-206.
[28] Ritchie L K, Trewin A, Reguera A, et al. Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes[J]. Microporous and Mesoporous Materials, 2010, 132(1):132-136.
[29] Chandra S, Kandambeth S, Biswal B P, et al. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination[J]. Journal of the American Chemical Society, 2013, 135(47):17853-17861.
[30] Shinde D B, Aiyappa H B, Bhadra M, et al. A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte[J]. Journal of Materials Chemistry A, 2016, 4(7):2682-2690.
[31] Ruigómez A, Rodríguez D, Stylianou K C, et al. Direct on-surface patterning of a crystalline laminar covalent organic framework synthesized at room temperature[J]. Chemistry A European Journal Communication, 2015, 21(30):10666-10670.
[32] Rodríguez D, Abrishamkar A, Navarro J A R, et al. Crystalline fibres of a covalent organic framework through bottom-up microfluidic synthesis[J]. Chemical Communications, 2016, 52(59):9212-9215.
[33] Zhang F, Zhang J, Zhang B, et al. Room-temperature synthesis of covalent organic framework (COF-LZU1) nanobars in CO2/water solvent[J]. Chemsuschem Communications, 2018, 11(20):3576-3580.
[34] Matsumoto M, Dasari R R, Ji W, et al. Rapid, low temperature formation of imine-linked covalent organic frameworks catalyzed by metal triflates[J]. Journal of the American Chemical Society, 2017, 139(14):4999-5002.
[35] Hu Y, Goodeal N, Chen Y, et al. Probing the chemical structure of monolayer covalent-organic frameworks grown via Schiff-base condensation reactions[J]. Chemical Communications, 2016, 52(64):9941-9944.
[36] Dai W, Shao F, Szczerbiński J, et al. Synthesis of a twodimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface[J]. Angewandte Chemie-International Edition, 2016, 55(1):213-217.
[37] Khan N A, Zhang R N, Wu H, et al. Solid-vapor interface engineered covalent organic framework membranes for molecular separation[J]. Journal of the American Chemical Society, 2020, 142(31):13450-13458.
[38] Martin J, Rodríguez D, Castillo O, et al. Macroscopic ultralight aerogel monoliths of imine-based covalent organic frameworks[J]. Angewandte Chemie-International Edition, 2021, 60(25):13969-13977.
[39] Zhu D, Zhu Y, Yan Q, et al. Pure crystalline covalent organic framework aerogels[J]. Chemistry of Materials, 2021, 33(11):4216-4224.
[40] Martin J A, Antonio J, Gomez J, et al. Ultralarge freestanding imine-based covalent organic framework membranes fabricated via compression[J]. Advanced Science, 2022, 9(7):2104643.
[41] Yang L, Yang H, Wu H, et al. COF membranes with uniform and exchangeable facilitated transport carriers for efficient carbon capture[J]. Journal of Materials Chemistry A, 2021, 9(21):12636-12643.
[42] Yadav D, Kumar A, Kim J Y, et al. Interfacially synthesized 2D COF thin film photocatalyst:Efficient photocatalyst for solar formic acid production from CO2 and fine chemical synthesis[J]. Journal of Materials Chemistry A, 2021, 9(15):9573-9580.
[43] Liang Y, Feng L, Liu X, et al. Enhanced selective adsorption of NSAIDs by covalent organic frameworks via functional group tuning[J]. Chemical Engineering Journal, 2021, 404:127095.
[44] Ma J, Yu Z, Liu S, et al. Efficient extraction of trace organochlorine pesticides from environmental samples by a polyacrylonitrile electrospun nanofiber membrane modified with covalent organic framework[J]. Journal of Hazardous Materials, 2022, 424:127455.
[45] Liao L, Guan X, Zheng H, et al. Three-dimensional microporous and mesoporous covalent organic frameworks based on cubic building units[J]. Chemical Science, 2022, 13(32):9305-9309.
[46] Ben T, Ren H, Ma S, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angewandte Chemie-International Edition, 2009, 48(50):9457-9460.
[47] Chae H K, Siberio D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974):523-527.
[48] Zhen J, Ding S, Wang W, et al. Undulated 2D covalent organic frameworks based on bowl-shaped cyclotricatechylene[J]. Chinese Journal of Chemistry, 2016, 34(8):783-787.
[49] Zhao Y, Liu X, Li Y, et al. Ultra-stable fluorescent 2D covalent organic framework for rapid adsorption and selective detection of radioiodine[J]. Microporous and Mesoporous Materials, 2021, 319:111046.
[50] Liu C, Xiao Y, Yang Q, et al. A highly fluorine-functionalized 2D covalent organic framework for promoting photocatalytic hydrogen evolution[J]. Applied Surface Science, 2021, 537:148082.
[51] Yan Y, Xia T, Zhao Y, et al. Fluorescent difluoroboron covalent organic frameworks via N, O-bidentate ligation[J]. Materials Letters, 2022, 315:131951.
[52] Dalapati S, Jin E, Addicoat M, et al. Highly emissive covalent organic frameworks[J]. Journal of the American Chemical Society, 2016, 138(18):5797-5800.
[53] Wang S, Liang Y, Dai T, et al. Cationic covalent-organic framework for sulfur storage with high-performance in lithium-sulfur batteries[J]. Journal of Colloid and Interface Science, 2021, 591:264-272.
[54] Liu R, Tan K T, Gong Y, et al. Covalent organic frameworks:An ideal platform for designing ordered materials and advanced applications[J]. Chemical Society Reviews, 2021, 50(1):120-242.
[55] Guo D, Ming F, Shinde D B, et al. Covalent assembly of two-dimensional cof-on-mxene heterostructures enables fast charging lithium hosts[J]. Advanced Functional Materials, 2021, 31(25):2101194.
[56] Kong X, Zhou S, Strømme M, et al. Redox active covalent organic framework-based conductive nanofibers for flexible energy storage device[J]. Carbon, 2021, 171:248-256.
[57] Long Z, Shi C, Wu C, et al. Heterostructure Fe2O3 nanorods@imine-based covalent organic framework for long cycling and high-rate lithium storage[J]. Nanoscale, 2022, 14(5):1906-1920.
[58] Wang J, He H, Wu Z, et al. Controllable construction of flower-like FeS/Fe2O3 composite for lithium storage[J]. Journal of Power Sources, 2018, 392:193-199.
[59] Xu B, Guan X, Zhang L Y, et al. A simple route to preparing γ-Fe2O3/RGO composite electrode materials for lithium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(9):4048-4054.
[60] Li F, Luo G, Chen W, et al. Rational design and controllable synthesis of multishelled Fe2O3@SnO2@C nanotubes as advanced anode material for lithium-/sodiumion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(40):36949-36959.
[61] Zhang S, Yin G, Zhao H, et al. Facile synthesis of carbon nanofiber confined FeS2/Fe2O3 heterostructures as superior anode materials for sodium-ion batteries[J]. Journal of Materials Chemistry C, 2021, 9(8):2933-2943.
[62] Liang J, Zhou Z, Zhang Q, et al. Chemically-confined mesoporous γ-Fe2O3 nanospheres with Ti3C2Tx MXene via alkali treatment for enhanced lithium storage[J]. Journal of Power Sources, 2021, 495:229758.
[63] Mu M, Wang Y, Qin Y, et al. Two-dimensional iminelinked covalent organic frameworks as a platform for selective oxidation of olefins[J]. ACS Applied Materials & Interfaces, 2017, 9(27):22856-22863.
[64] Maia R A, Berg F, Ritleng V, et al. Design, synthesis and characterization of nickel-functionalized covalent organic framework NiCl@RIO-12 for heterogeneous Suzuki-Miyaura catalysis[J]. Chemistry-A European Journal, 2020, 26(9):2051-2059.
[65] Leng W, Peng Y, Zhang J, et al. Sophisticated design of covalent organic frameworks with controllable bimetallic docking for a cascade reaction[J]. Chemistry-A European Journal, 2016, 22(27):9087-9091.
[66] Leng W, Ge R, Dong B, et al. Bimetallic docked covalent organic frameworks with high catalytic performance towards tandem reactions[J]. RSC Advances, 2016, 6(44):37403-37406.
[67] Qian C, Zhou W, Qiao J, et al. Linkage Engineering by harnessing supramolecular interactions to fabricate 2D hydrazone-linked covalent organic framework platforms toward advanced catalysis[J]. Journal of the American Chemical Society, 2020, 142(42):18138-18149.
[68] Wang J C, Liu C X, Kan X, et al. Pd@COF-QA:Aphase transfer composite catalyst for aqueous SuzukiMiyaura coupling reaction[J]. Green Chemistry, 2020, 22(4):1150-1155.
[69] Li Y, Zuo K, Gao T, et al. Bimetallic docked covalent organic frameworks with high catalytic performance towards coupling/oxidation cascade reactions[J]. RSC Advances, 2022, 12(8):4874-4882.
[70] Bai L, Phua S Z F, Lim W Q, et al. Nanoscale covalent organic frameworks as smart carriers for drug delivery[J]. Chemical Communications, 2016, 52(22):4128-4131.
[71] Mitra S, Kandambeth S, Biswal B P, et al. Self-exfoliated guanidinium-based ionic covalent organic nanosheets (iCONs)[J]. Journal of the American Chemical Society, 2016, 138(8):2823-2828.
[72] Akyuz L. An imine based COF as a smart carrier for targeted drug delivery:From synthesis to computational studies[J]. Microporous and Mesoporous Materials, 2020, 294:109850.
[73] Bhunia S, Deo K A, Gaharwar A K. 2D covalent organic frameworks for biomedical applications[J]. Advanced Functional Materials, 2020, 30(27):2002046.
[74] Zou Y, Wang P, Zhang A, et al. Covalent organic framework-incorporated nanofibrous membrane as an intelligent platform for wound dressing[J]. ACS Applied Materials & Interfaces, 2022, 14(7):8680-8692.
[75] Zhang Y J, Yang Y, Wang J M, et al. Electrochemiluminescence enhanced by isolating ACQ phores in pyrenebased porous organic polymer:A novel ECL emitter for the construction of biosensing platform[J]. Analytica Chimica Acta, 2022, 1206:339648.
Outlines

/