[1] Kricheldorf H R. Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides[J]. Angewandte Chemie-International Edition, 2006, 45(35):5752-5784.
[2] Côté A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751):1166-1170.
[3] Lanni L M, Tilford R W, Bharathy M, et al. Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks[J]. Journal of the American Chemical Society, 2011, 133(35):13975-13983.
[4] Smith B J, Overholts A C, Hwang N, et al. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks[J]. Chemical Communications, 2016, 52(18):3690-3693.
[5] Guo J, Xu Y, Jin S, et al. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized pi clouds[J]. Nature Communications, 2013, 4(1):2736-2743.
[6] Segura J, Mancheño M, Zamora F. Covalent organic frameworks based on Schiff-base chemistry:Synthesis, properties and potential applications[J]. Chemical Society Reviews, 2016, 45(20):5635-5671.
[7] Colson J, Dichtel W. Rationally synthesized two-dimensional polymers[J]. Nature Chemistry, 2013, 5(6):453-465.
[8] Kaderi H, Hunt J, Cortés J, et al. Designed synthesis of 3D covalent organic frameworks[J]. Science, 2007, 316(5822):268-272.
[9] Geng K, He T, Liu R, et al. Covalent organic frameworks:Design, synthesis, and functions[J]. Chemical Reviews, 2020, 120(16):8814-8933.
[10] Kouwer P H, Koepf M, Le Sage V, et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels[J]. Nature, 2013, 493(7434):651-655.
[11] Ding S Y, Gao J, Wang Q, et al. Construction of covalent organic framework for catalysis:Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction[J]. Journal of the American Chemical Society, 2011, 133(49):19816-19822.
[12] Wan S, Gándara F, Asano A, et al. Covalent organic frameworks with high charge carrier mobility[J]. Chemistry of Materials, 2011, 23(18):4094-4097.
[13] Kandambeth S, Mallick A, Lukose B, et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route[J]. Journal of the American Chemical Society, 2012, 134(48):19524-19527.
[14] Xu H S, Ding S Y, An W K, et al. Constructing crystalline covalent organic frameworks from chiral building blocks[J]. Journal of the American Chemical Society, 2016, 138(36):11489-11492.
[15] Zhou T Y, Xu S Q, Wen Q, et al. One-step construction of two different kinds of pores in a 2D covalent organic framework[J]. Journal of the American Chemical Society, 2014, 136(45):15885-15888.
[16] Tian Y, Xu S Q, Qian C, et al. Two-dimensional dualpore covalent organic frameworks obtained from the combination of two D 2h symmetrical building blocks[J]. Chemical Communications, 2016, 52(78):11704-11707.
[17] Pang Z F, Xu S Q, Zhou T Y, et al. Construction of covalent organic frameworks bearing three different kinds of pores through the heterostructural mixed linker strategy[J]. Journal of the American Chemical Society, 2016, 138(14):4710-4713.
[18] Jhulki S, Evans A M, Hao X L, et al. Humidity sensing through reversible isomerization of a covalent organic framework[J]. Journal of the American Chemical Society, 2020, 142(2):783-791.
[19] Uribe-Romo F J, Hunt J R, Furukawa H, et al. A crystalline imine-linked 3D porous covalent organic framework[J]. Journal of the American Chemical Society, 2009, 131(13):4570-4571.
[20] Zhang Y B, Su J, Furukawa H, et al. Single-crystal structure of a covalent organic framework[J]. Journal of the American Chemical Society, 2013, 135(44):16336-16339.
[21] Fang Q, Gu S, Zheng J, et al. 3D microporous basefunctionalized covalent organic frameworks for size-selective catalysis[J]. Angewandte Chemie International Edition, 2014, 53(11):2878-2882.
[22] Lin G, Ding H, Yuan D, et al. A pyrene-based, fluorescent three-dimensional covalent organic framework[J]. Journal of the American Chemical Society, 2016, 138(10):3302-3305.
[23] Ma T, Kapustin E A, Yin S X, et al. Single-crystal xray diffraction structures of covalent organic frameworks[J]. Science, 2018, 361(6397):48-52.
[24] Li Y, Chen Q, Xu T, et al. De novo design and facile synthesis of 2D covalent organic frameworks:A two-inone strategy[J]. Journal of the American Chemical Society, 2019, 141(35):13822-13828.
[25] Ding S Y, Wang W. Covalent organic frameworks (COFs):From design to applications[J]. Chemical Society Reviews, 2013, 42(2):548-568.
[26] Wei H, Chai S, Hu N, et al. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity[J]. Chemical Communications, 2015, 51(61):12178-12181.
[27] Campbell N L, Clowes R, Ritchie L K, et al. Rapid microwave synthesis and purification of porous covalent organic frameworks[J]. Chemistry of Materials, 2009, 21(2):204-206.
[28] Ritchie L K, Trewin A, Reguera A, et al. Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes[J]. Microporous and Mesoporous Materials, 2010, 132(1):132-136.
[29] Chandra S, Kandambeth S, Biswal B P, et al. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination[J]. Journal of the American Chemical Society, 2013, 135(47):17853-17861.
[30] Shinde D B, Aiyappa H B, Bhadra M, et al. A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte[J]. Journal of Materials Chemistry A, 2016, 4(7):2682-2690.
[31] Ruigómez A, Rodríguez D, Stylianou K C, et al. Direct on-surface patterning of a crystalline laminar covalent organic framework synthesized at room temperature[J]. Chemistry A European Journal Communication, 2015, 21(30):10666-10670.
[32] Rodríguez D, Abrishamkar A, Navarro J A R, et al. Crystalline fibres of a covalent organic framework through bottom-up microfluidic synthesis[J]. Chemical Communications, 2016, 52(59):9212-9215.
[33] Zhang F, Zhang J, Zhang B, et al. Room-temperature synthesis of covalent organic framework (COF-LZU1) nanobars in CO2/water solvent[J]. Chemsuschem Communications, 2018, 11(20):3576-3580.
[34] Matsumoto M, Dasari R R, Ji W, et al. Rapid, low temperature formation of imine-linked covalent organic frameworks catalyzed by metal triflates[J]. Journal of the American Chemical Society, 2017, 139(14):4999-5002.
[35] Hu Y, Goodeal N, Chen Y, et al. Probing the chemical structure of monolayer covalent-organic frameworks grown via Schiff-base condensation reactions[J]. Chemical Communications, 2016, 52(64):9941-9944.
[36] Dai W, Shao F, Szczerbiński J, et al. Synthesis of a twodimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface[J]. Angewandte Chemie-International Edition, 2016, 55(1):213-217.
[37] Khan N A, Zhang R N, Wu H, et al. Solid-vapor interface engineered covalent organic framework membranes for molecular separation[J]. Journal of the American Chemical Society, 2020, 142(31):13450-13458.
[38] Martin J, Rodríguez D, Castillo O, et al. Macroscopic ultralight aerogel monoliths of imine-based covalent organic frameworks[J]. Angewandte Chemie-International Edition, 2021, 60(25):13969-13977.
[39] Zhu D, Zhu Y, Yan Q, et al. Pure crystalline covalent organic framework aerogels[J]. Chemistry of Materials, 2021, 33(11):4216-4224.
[40] Martin J A, Antonio J, Gomez J, et al. Ultralarge freestanding imine-based covalent organic framework membranes fabricated via compression[J]. Advanced Science, 2022, 9(7):2104643.
[41] Yang L, Yang H, Wu H, et al. COF membranes with uniform and exchangeable facilitated transport carriers for efficient carbon capture[J]. Journal of Materials Chemistry A, 2021, 9(21):12636-12643.
[42] Yadav D, Kumar A, Kim J Y, et al. Interfacially synthesized 2D COF thin film photocatalyst:Efficient photocatalyst for solar formic acid production from CO2 and fine chemical synthesis[J]. Journal of Materials Chemistry A, 2021, 9(15):9573-9580.
[43] Liang Y, Feng L, Liu X, et al. Enhanced selective adsorption of NSAIDs by covalent organic frameworks via functional group tuning[J]. Chemical Engineering Journal, 2021, 404:127095.
[44] Ma J, Yu Z, Liu S, et al. Efficient extraction of trace organochlorine pesticides from environmental samples by a polyacrylonitrile electrospun nanofiber membrane modified with covalent organic framework[J]. Journal of Hazardous Materials, 2022, 424:127455.
[45] Liao L, Guan X, Zheng H, et al. Three-dimensional microporous and mesoporous covalent organic frameworks based on cubic building units[J]. Chemical Science, 2022, 13(32):9305-9309.
[46] Ben T, Ren H, Ma S, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area[J]. Angewandte Chemie-International Edition, 2009, 48(50):9457-9460.
[47] Chae H K, Siberio D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974):523-527.
[48] Zhen J, Ding S, Wang W, et al. Undulated 2D covalent organic frameworks based on bowl-shaped cyclotricatechylene[J]. Chinese Journal of Chemistry, 2016, 34(8):783-787.
[49] Zhao Y, Liu X, Li Y, et al. Ultra-stable fluorescent 2D covalent organic framework for rapid adsorption and selective detection of radioiodine[J]. Microporous and Mesoporous Materials, 2021, 319:111046.
[50] Liu C, Xiao Y, Yang Q, et al. A highly fluorine-functionalized 2D covalent organic framework for promoting photocatalytic hydrogen evolution[J]. Applied Surface Science, 2021, 537:148082.
[51] Yan Y, Xia T, Zhao Y, et al. Fluorescent difluoroboron covalent organic frameworks via N, O-bidentate ligation[J]. Materials Letters, 2022, 315:131951.
[52] Dalapati S, Jin E, Addicoat M, et al. Highly emissive covalent organic frameworks[J]. Journal of the American Chemical Society, 2016, 138(18):5797-5800.
[53] Wang S, Liang Y, Dai T, et al. Cationic covalent-organic framework for sulfur storage with high-performance in lithium-sulfur batteries[J]. Journal of Colloid and Interface Science, 2021, 591:264-272.
[54] Liu R, Tan K T, Gong Y, et al. Covalent organic frameworks:An ideal platform for designing ordered materials and advanced applications[J]. Chemical Society Reviews, 2021, 50(1):120-242.
[55] Guo D, Ming F, Shinde D B, et al. Covalent assembly of two-dimensional cof-on-mxene heterostructures enables fast charging lithium hosts[J]. Advanced Functional Materials, 2021, 31(25):2101194.
[56] Kong X, Zhou S, Strømme M, et al. Redox active covalent organic framework-based conductive nanofibers for flexible energy storage device[J]. Carbon, 2021, 171:248-256.
[57] Long Z, Shi C, Wu C, et al. Heterostructure Fe2O3 nanorods@imine-based covalent organic framework for long cycling and high-rate lithium storage[J]. Nanoscale, 2022, 14(5):1906-1920.
[58] Wang J, He H, Wu Z, et al. Controllable construction of flower-like FeS/Fe2O3 composite for lithium storage[J]. Journal of Power Sources, 2018, 392:193-199.
[59] Xu B, Guan X, Zhang L Y, et al. A simple route to preparing γ-Fe2O3/RGO composite electrode materials for lithium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(9):4048-4054.
[60] Li F, Luo G, Chen W, et al. Rational design and controllable synthesis of multishelled Fe2O3@SnO2@C nanotubes as advanced anode material for lithium-/sodiumion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(40):36949-36959.
[61] Zhang S, Yin G, Zhao H, et al. Facile synthesis of carbon nanofiber confined FeS2/Fe2O3 heterostructures as superior anode materials for sodium-ion batteries[J]. Journal of Materials Chemistry C, 2021, 9(8):2933-2943.
[62] Liang J, Zhou Z, Zhang Q, et al. Chemically-confined mesoporous γ-Fe2O3 nanospheres with Ti3C2Tx MXene via alkali treatment for enhanced lithium storage[J]. Journal of Power Sources, 2021, 495:229758.
[63] Mu M, Wang Y, Qin Y, et al. Two-dimensional iminelinked covalent organic frameworks as a platform for selective oxidation of olefins[J]. ACS Applied Materials & Interfaces, 2017, 9(27):22856-22863.
[64] Maia R A, Berg F, Ritleng V, et al. Design, synthesis and characterization of nickel-functionalized covalent organic framework NiCl@RIO-12 for heterogeneous Suzuki-Miyaura catalysis[J]. Chemistry-A European Journal, 2020, 26(9):2051-2059.
[65] Leng W, Peng Y, Zhang J, et al. Sophisticated design of covalent organic frameworks with controllable bimetallic docking for a cascade reaction[J]. Chemistry-A European Journal, 2016, 22(27):9087-9091.
[66] Leng W, Ge R, Dong B, et al. Bimetallic docked covalent organic frameworks with high catalytic performance towards tandem reactions[J]. RSC Advances, 2016, 6(44):37403-37406.
[67] Qian C, Zhou W, Qiao J, et al. Linkage Engineering by harnessing supramolecular interactions to fabricate 2D hydrazone-linked covalent organic framework platforms toward advanced catalysis[J]. Journal of the American Chemical Society, 2020, 142(42):18138-18149.
[68] Wang J C, Liu C X, Kan X, et al. Pd@COF-QA:Aphase transfer composite catalyst for aqueous SuzukiMiyaura coupling reaction[J]. Green Chemistry, 2020, 22(4):1150-1155.
[69] Li Y, Zuo K, Gao T, et al. Bimetallic docked covalent organic frameworks with high catalytic performance towards coupling/oxidation cascade reactions[J]. RSC Advances, 2022, 12(8):4874-4882.
[70] Bai L, Phua S Z F, Lim W Q, et al. Nanoscale covalent organic frameworks as smart carriers for drug delivery[J]. Chemical Communications, 2016, 52(22):4128-4131.
[71] Mitra S, Kandambeth S, Biswal B P, et al. Self-exfoliated guanidinium-based ionic covalent organic nanosheets (iCONs)[J]. Journal of the American Chemical Society, 2016, 138(8):2823-2828.
[72] Akyuz L. An imine based COF as a smart carrier for targeted drug delivery:From synthesis to computational studies[J]. Microporous and Mesoporous Materials, 2020, 294:109850.
[73] Bhunia S, Deo K A, Gaharwar A K. 2D covalent organic frameworks for biomedical applications[J]. Advanced Functional Materials, 2020, 30(27):2002046.
[74] Zou Y, Wang P, Zhang A, et al. Covalent organic framework-incorporated nanofibrous membrane as an intelligent platform for wound dressing[J]. ACS Applied Materials & Interfaces, 2022, 14(7):8680-8692.
[75] Zhang Y J, Yang Y, Wang J M, et al. Electrochemiluminescence enhanced by isolating ACQ phores in pyrenebased porous organic polymer:A novel ECL emitter for the construction of biosensing platform[J]. Analytica Chimica Acta, 2022, 1206:339648.