Papers

Research on multi-protocol wireless data analysis and prediction of converter station based on improved particle swarm algorithm

  • MAO Chunxiang ,
  • CHAI Bin ,
  • LIU Ruopeng
Expand
  • Ultra-High Voltage Company of State Grid Ningxia Electric Power Co., Ltd, Yinchuan 750000, China

Received date: 2022-06-11

  Revised date: 2022-07-27

  Online published: 2024-04-15

Abstract

At present, DC transmission is developing toward high voltage and large capacity technology. Its advantages in longdistance transmission, cross-region networking and flexible dispatch are becoming more and more obvious, but at the same time, abnormal outage of DC system caused by critical equipment failure of converter station has a greater impact on power system. Therefore, it is of great significance to enhance the perception of critical DC equipment, to predict and handle the faults of critical DC equipment in advance, to reduce abnormal outage of DC system and to improve power supply reliability. Taking the multi-protocol wireless data of Ningxia State Grid converter station as an example, an improved particle swarm algorithm based on the gray wolf algorithm is proposed. The experimental results show that the particle swarm-wolf algorithm can more accurately predict the monitoring data of the converter station, reduce the prediction error, and provide a basis for the operation and maintenance of the converter station in the future.

Cite this article

MAO Chunxiang , CHAI Bin , LIU Ruopeng . Research on multi-protocol wireless data analysis and prediction of converter station based on improved particle swarm algorithm[J]. Science & Technology Review, 2024 , 42(2) : 120 -128 . DOI: 10.3981/j.issn.1000-7857.2024.02.012

References

[1] 雷晓明. 神经网络在无线网络流量预测中的应用[J]. 现代电子技术, 2017, 40(2):111-113.
[2] 马旗超, 刘占军, 彭霞, 等. C-RAN无线网络中业务预测的马尔科夫模型[J]. 电视技术, 2015, 39(3):148-152.
[3] 熊俊, 何宽, 李颖川, 等. 基于优化FAEMD-OSELM的WSN流量预测算法研究[J]. 仪器仪表学报, 2020, 41(9):262-270.
[4] Huang R Z, Huang C Y, Liu Y B, et al. LSGCN:Long short-term traffic prediction with graph convolutional networks[C/OL]//Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence, 2020:2355-2361[2022-07-28]. https://www.ijcai.org/proceedings/2020/326.
[5] Wang W, Zhou C H, He H L, et al. Cellular traffic load prediction with LSTM and Gaussian process regression[C]//2020 IEEE International Conference on Communications (ICC). Piscataway, NJ:IEEE, 2020:1-6.
[6] Zhang C T, Zhang H X, Yuan D F, et al. Citywide cellular traffic prediction based on densely connected convolutional neural networks[J]. IEEE Communications Letters, 2018, 22(8):1656-1659.
[7] Troia S, Alvizu R, Zhou Y D, et al. Deep learning-based traffic prediction for network optimization[C]//2018 20th International Conference on Transparent Optical Networks. Piscataway NJ:IEEE, 2018:1-4.
[8] 黄庆东, 郭民鹏. 基于LSTM-KF的无线传感器网络数据漂移盲校准算法[J]. 计算机应用与软件, 2022, 39(3):132-138.
[9] Fan J Y, Mu D J, Liu Y. Research on network traffic prediction model based on neural network[C]//2019 2nd International Conference on Information Systems and Computer Aided Education (ICISCAE). Piscataway, NJ:IEEE, 2019:554-557.
[10] Yu L X, Li M, Jin W Q, et al. STEP:A spatio-temporal fine-granular user traffic prediction system for cellular networks[J]. IEEE Transactions on Mobile Computing, 2021, 20(12):3453-3466.
[11] 蔡少辉, 郭卫明, 林锦峰. 一种基于LoRa的换流站, 变电站气象信息智能无线收发装置设计[J]. 机电信息, 2019(29):108-110.
[12] 杨新华, 郑越, 马建立, 等. 基于LoRa的电力物联网智能终端采集系统设计[J]. 传感器与微系统, 2022, 41(1):123-126.
[13] 陆如, 于惠鸣, 刘自超. 基于全景数据系统的特高压直流换流站监控方案[J]. 通信电源技术, 2019, 36(7):80-83.
[14] 郭沛, 王朝伟, 原玮, 等. 一种换流站接地极的温湿度远程监测系统:208621098U[P]. 2019-03-19.
[15] 陈昌明, 张锐, 祝克伟, 等. 一种基于物联网的换流站阀厅环境监控装置:109459088A[P]. 2019-03-12.
[16] 贾帅锋, 张浩然, 李凤龙, 等. 一种新型直流换流站仿真培训系统的设计与实现[J]. 电气技术, 2021, 22(07):72-77.
[17] 陆昶安, 沈鹏, 龙民权, 等. 换流站电力设备支柱绝缘子外套加装增爬伞的防雨闪效果研究[J]. 电子乐园, 2019(19):215-216.
[18] 王凌云, 杨雨琪, 史磊, 等. 基于长短期记忆法的换流站阀冷系统参数预测[J]. 科学技术与工程, 2022, 22(2):547-555.
Outlines

/