[1] 唐靖林,曾大本.面向汽车轻量化材料加工技术的现状及发展[J].金属热加工, 2009(11):11-16.
[2] Li Y X, Lin Z Q, Jiang A Q. Experimental study of glassfiber mat thermoplastic material impact properties and lightweight automobile body analysis[J]. Materials & Design, 2004, 25(7):579-585.
[3] 郑祥健,金龙兵,王国军,等.铝合金轮毂的生产和市场现状[J].轻合金加工技术, 2004, 32(7):8-11.
[4] 贾文东.运动型家用轿车轮毂设计研究[D].武汉:湖北工业大学, 2020.
[5] 牛多,黄勇,孟昭昕.铝合金端架压铸充型凝固数值模拟与工艺研究[J].沈阳理工大学学报, 2016, 35(5):82-86.
[6] 张海渠,马桂艳,宋鸿武,等.铝合金轮毂成形工艺的应用与研究进展[J].沈阳大学学报, 2011, 23(4):1-4.
[7] 聂伟钢.低压铸造铝合金轮毂的数值模拟与工艺优化[D].秦皇岛:燕山大学, 2014.
[8] 易磊,陈海峰,李秀兵.内压胀型铸造技术[J].热加工工艺, 2011, 40(7):37-39.
[9] 张毅.铸造工艺CAD及其应用[M].北京:机械工艺出版社, 1994(8):18-25.
[10] 任凯,冯立超,孙立,等.低压铸造铝合金轮毂的研究现状[J].热加工工艺, 2020, 50(9):10-14.
[11] 毛建辉,张玉贤,姜路文,等. A356铸造铝合金轮毂组织与性能分析[J].中国冶金, 2021, 31(5):66-71.
[12] 王志坚,赵岩,宋鸿武,等.大型铝合金轮毂低压铸造过程数值模拟及工艺优化[J].特色铸造及有色合金, 2014, 34(3):256-259.
[13] 张新颖,潘增源,杜士良,等.大偏距载重汽车铝车轮的反压铸造[J].特种铸造及有色合金, 2002:167-169.
[14] 李婷.解读汽车车轮的制造工艺技术[J].模具工程, 2012(9):75-79.
[15] 庞午骥,曹振伟,万金华.铝合金车轮制造技术及发展趋势[J].铝加工, 2017(2):4-7.
[16] 戴星.汽车轮毂用高强轻合金的差压铸造工艺研究[J].热加工工艺, 2015, 44(15):98-100.
[17] Yan Q S, Lu G, Gui M, et al. Effect of synergistic action of ultrasonic vibration and solidification pressure on tensile properties of vacuum counter-pressure casting aluminum alloy[J]. China Foundry, 2018, 15(6):411-417.
[18] 严青松.智能控制的薄壁铝合金铸件真空差压铸造工艺与理论[D].武汉:华中科技大学, 2006.
[19] 马春江,陈玖新,葛素静,等.挤压铸造重载汽车用铝合金车轮的组织及性能[J].特种铸造及有色合金, 2014, 34(10):1063-1065.
[20] 洪涛,王东方,华逢志.铝合金轮毂挤压铸造工艺参数优化[J].铸造技术, 2020, 41(12):1160-1164.
[21] 王丹晨.铝合金车轮锻造工艺及质量控制技术研究[D].北京:机械科学研究总院, 2018.
[22] 高军,赵国群.整体式锻造铝合金车轮及其发展[J].汽车工艺与材料, 2001(5):14-16.
[23] 王顺成,戚文军,郑开宏,等.半固态模锻ZL101铝合金车轮的组织与力学性能[J].材料热处理学报, 2013, 34(5):116-120.
[24] Shen K, Timko M, Li Y J, et al. The effect of temper, grain orientation, and composition on the fatigue properties of forged aluminum-lithium 2195 Alloy[J]. Journal of Materials Engineering and Performance, 2019, 28:5625-5638.
[25] 董金卫.轿车铝合金轮毂锻造成形新工艺技术研究[D].秦皇岛:燕山大学, 2007.
[26] 张振.锻造铝合金轮毂的工艺特点及检测方法研究[J].中国高新技术企业, 2015, 21:47-48.
[27] 陈炜,林忠钦,徐伟力,等.覆盖件拉延模型面的特征组装配建模技术[J].上海交通大学学报, 2001, 35(2):123-127.
[28] 何维均,宋鸿武,常海平,等.铸旋轮毂热旋压过程的数值模拟及工艺优化[J].精密成形工程, 2011, 3(2):6-10.
[29] 吴伯杰,赵殊.基于UGII覆盖件工艺补充面的参数化设计[J].现代制造工程, 2003(4):18-20.
[30] 张庆玲.先进的铝合金轮毂旋压成形技术[J].金属世界, 2008(5):52-54.
[31] 程应潮,刘罡,范国辉.国内外轿车覆盖件冲压模具设计概览[J].上海汽车, 2004(5):26-28.
[32] Tash M, Samuel F H, Mucciardi F, et al. Effect of metallurgical parameters on the hardness and microstruetural charact erization of as-cast and heat-treated 356 and 319 aluminum alloys[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2007, 443(1/2):185-201.
[33] 范宋杰,何国球,刘晓山,等. A356铝合金力学性能与微观结构[J].有色金属, 2008, 60(4):5-8.
[34] Niu G D, Wang J, Li J P, et al. Characterization of in-situ reinforced (Al, Si)3(Ti, Ce) precipitates in T6 treated A356-0.3 wt.% Ce-1.5 vol.% TiCN composite and its effects on mechanical properties[J]. Materials Characterization, 2022, 185:1-10.
[35] 刘宏磊,梁勇,郑宝全,等.多次人工时效对低压铸造A356.2铝合金轮毂力学性能的影响[J].轻合金加工技术, 2008(11):50-52.
[36] 何维均,宋鸿武,张丽娟,等.铸造A356铝合金的高速热变形行为[J].塑性工程学报, 2011, 18(2):71-75.
[37] 胡强,闫亮明,杜青春,等.压铸A356铝合金的热变形行为[J].特种铸造及有色合金, 2020, 40(10):1099-1102.
[38] 王清松,徐戊矫,吴道祥,等.变形态2219铝合金高温塑性变形的本构模型[J].铝加工, 2021(3):27-31.
[39] 加藤,乔士.用旋压法加工铝轮毂技术的开发[J].有色金属加工, 1997(5):36-39.
[40] 宋鸿武,李昌海,常海平,等.高强韧铝合金轮毂的轻量化铸旋新工艺[J].稀有金属, 2012, 36(4):630-634.
[41] 姜峰,张慧,李云峰,等.混合稀土变质对A356合金组织及力学性能的影响[J].热加工工艺, 2023, 56(3):68-71.
[42] Yi W, Liu G C, Lu Z, et al. Efficient alloy design of Srmodified A356 alloys driven by computational thermodynamics and machine learning[J]. Journal of Materials Science & Technology, 2022, 112:277-290.
[43] Haghshenas M, Zarei-Hanzaki A, Jahazi M. An investigation to the effect of deformation-heat treatment cycle on the eutectic morphology and mechanical properties of a Thixocast A356 alloy[J]. Materials Characterization, 2009, 60(8):817-823.
[44] 曾胜,常海平,张金,等. A356铝合金的高温流变行为及本构模型研究[J].锻压技术, 2022(4):242-248.
[45] Huang X S, Hu Z J, Zhu B W, et al. High temperature flow behavior of A356 aluminum alloy based on modified Johnson-Cook model and recrystallization model[J]. Joinal of Plasticity Engineering, 2021, 28(12):115-124.
[46] 姬广欣,周起涛,薛艳菲. A356铝合金轮毂铸旋新工艺的应用与毛坯设计[J].模具技术, 2019(2):12-15.
[47] 常海平,李昌海,万奇亮.感应加热在铸旋铝合金车轮中的应用[J].精密成形工程, 2016, 8(2):72-74.
[48] 徐世文,张立娟,常海平,等.铸旋铝合金车轮旋压模具的优化设计[J].精密成形工程, 2018, 10(2):122-125.
[49] Imamura Y, Ikawa K, Sakane Y, et al. Investigation of forming accuracy in mandrel-free hot-spinning[J]. Procedia Engineering, 2017, 207:1701-1706.
[50] 黄渊.铝合金轮毂二次旋压成型工艺研究[J].企业技术开发, 2019, 38(2):76-78.
[51] Hu Q, Yan L M, Du Q C, et al. Effect of the first pass reduction rate on spinning forming of hub during two wheels spinning[J]. Journal of Plasticity Engineering, 2022, 29(2):134-142.
[52] Wu X Y, Zhang H R, Chen H L, et al. Evolution of microstructure and mechanical properties of A356 aluminium alloy processed by hot spinning process[J]. China Foundry, 2017, 14(2):138-144.
[53] Huang C Q, Liu J X. Effects of hot spinning and heat treatment on the microstructure, texture, and mechanical properties of A356 wheel hubs[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2020, 51(1):289-298.
[54] Wang Z F, Ou C X, Wang M, et al. Mechanical properties and microstructure of A356-T6 aluminum alloy wheel hub based on casting-spinning process[J]. Materials Science Forum, 2021, 1036:3-10.
[55] 刘智冲,常海平,张立娟.影响A356铝合金车轮旋压成形品质的因素分析[J].精密成形工程, 2012, 4(3):30-33.
[56] 马桂艳. A356铝合金热变形机理和旋压工艺研究[D].沈阳:沈阳大学, 2012.
[57] 谭学菊. A356铝合金轮毂的旋压成形工艺研究[D].秦皇岛:燕山大学, 2018.
[58] 胡强.水冷压铸A356铝合金轮毂两旋轮旋压成形的研究[D].呼和浩特:内蒙古工业大学, 2021.
[59] 张丽娟.铸旋轮毂结构优化设计[J].锻压技术, 2017, 45(5):123-127.
[60] 胡强,闫亮明,杜青春,等.两旋轮旋压首道次压下率对轮毂旋压成形的影响[J].塑性工程学报, 2022, 29(2):134-142.
[61] 孟瑶.基于ANSYS的铝合金车轮旋压成形的模拟仿真与参数优化[D].长春:长春工业大学, 2017:6-8.
[62] 王永亮.铝合金轮毂旋压成形数值模拟技术研究[D].长春:长春理工大学, 2019.
[63] Guo Y M, Li M Z, Xu H Q, et al. Research on multipass hot spinning based on finite element simulation and experiment for aluminum alloy component[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(5/6/7/8):1995-2008.
[64] Chen S Y, Shu X D, Lu Y J. Effect of 6061 aluminum alloy wheel forging and spinning process parameters on forming quality[J]. Metalurgija, 2022, 61(2):317-320.
[65] Zhao G Y, Lu C J, Zhang R Y, et al. Uneven plastic deformation behavior of high-strength cast aluminum alloy tube in multi-pass hot power backward spinning[J]. The International Journal of Advanced Manufacturing Technology volume, 2017, 88:907-921.