Reviews

The research status of production technology of casting and spinning aluminum alloy wheels

  • YUE Fengli ,
  • YAN Weihao ,
  • ZHANG Mengxiao ,
  • SONG Hongwu ,
  • ZHANG Shihong
Expand
  • 1. School of Automobile and Transportation, Shenyang Ligong University, Shenyang 110159, China;
    2. Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

Received date: 2022-06-21

  Revised date: 2022-08-02

  Online published: 2024-04-15

Abstract

In this paper, the research status of aluminum alloy wheel production technology at home and abroad are summarized, and the research history and latest progress of cast spinning aluminum alloy wheel forming technology are described. The application of spinning technology in wheel forming is explored and clarified by analyzing the present situation of finite element numerical simulation. The current development trend and deficiency of the forming process are summarized and the further research direction of aluminum alloy wheel casting and spinning forming process is suggested.

Cite this article

YUE Fengli , YAN Weihao , ZHANG Mengxiao , SONG Hongwu , ZHANG Shihong . The research status of production technology of casting and spinning aluminum alloy wheels[J]. Science & Technology Review, 2024 , 42(3) : 123 -136 . DOI: 10.3981/j.issn.1000-7857.2024.03.011

References

[1] 唐靖林,曾大本.面向汽车轻量化材料加工技术的现状及发展[J].金属热加工, 2009(11):11-16.
[2] Li Y X, Lin Z Q, Jiang A Q. Experimental study of glassfiber mat thermoplastic material impact properties and lightweight automobile body analysis[J]. Materials & Design, 2004, 25(7):579-585.
[3] 郑祥健,金龙兵,王国军,等.铝合金轮毂的生产和市场现状[J].轻合金加工技术, 2004, 32(7):8-11.
[4] 贾文东.运动型家用轿车轮毂设计研究[D].武汉:湖北工业大学, 2020.
[5] 牛多,黄勇,孟昭昕.铝合金端架压铸充型凝固数值模拟与工艺研究[J].沈阳理工大学学报, 2016, 35(5):82-86.
[6] 张海渠,马桂艳,宋鸿武,等.铝合金轮毂成形工艺的应用与研究进展[J].沈阳大学学报, 2011, 23(4):1-4.
[7] 聂伟钢.低压铸造铝合金轮毂的数值模拟与工艺优化[D].秦皇岛:燕山大学, 2014.
[8] 易磊,陈海峰,李秀兵.内压胀型铸造技术[J].热加工工艺, 2011, 40(7):37-39.
[9] 张毅.铸造工艺CAD及其应用[M].北京:机械工艺出版社, 1994(8):18-25.
[10] 任凯,冯立超,孙立,等.低压铸造铝合金轮毂的研究现状[J].热加工工艺, 2020, 50(9):10-14.
[11] 毛建辉,张玉贤,姜路文,等. A356铸造铝合金轮毂组织与性能分析[J].中国冶金, 2021, 31(5):66-71.
[12] 王志坚,赵岩,宋鸿武,等.大型铝合金轮毂低压铸造过程数值模拟及工艺优化[J].特色铸造及有色合金, 2014, 34(3):256-259.
[13] 张新颖,潘增源,杜士良,等.大偏距载重汽车铝车轮的反压铸造[J].特种铸造及有色合金, 2002:167-169.
[14] 李婷.解读汽车车轮的制造工艺技术[J].模具工程, 2012(9):75-79.
[15] 庞午骥,曹振伟,万金华.铝合金车轮制造技术及发展趋势[J].铝加工, 2017(2):4-7.
[16] 戴星.汽车轮毂用高强轻合金的差压铸造工艺研究[J].热加工工艺, 2015, 44(15):98-100.
[17] Yan Q S, Lu G, Gui M, et al. Effect of synergistic action of ultrasonic vibration and solidification pressure on tensile properties of vacuum counter-pressure casting aluminum alloy[J]. China Foundry, 2018, 15(6):411-417.
[18] 严青松.智能控制的薄壁铝合金铸件真空差压铸造工艺与理论[D].武汉:华中科技大学, 2006.
[19] 马春江,陈玖新,葛素静,等.挤压铸造重载汽车用铝合金车轮的组织及性能[J].特种铸造及有色合金, 2014, 34(10):1063-1065.
[20] 洪涛,王东方,华逢志.铝合金轮毂挤压铸造工艺参数优化[J].铸造技术, 2020, 41(12):1160-1164.
[21] 王丹晨.铝合金车轮锻造工艺及质量控制技术研究[D].北京:机械科学研究总院, 2018.
[22] 高军,赵国群.整体式锻造铝合金车轮及其发展[J].汽车工艺与材料, 2001(5):14-16.
[23] 王顺成,戚文军,郑开宏,等.半固态模锻ZL101铝合金车轮的组织与力学性能[J].材料热处理学报, 2013, 34(5):116-120.
[24] Shen K, Timko M, Li Y J, et al. The effect of temper, grain orientation, and composition on the fatigue properties of forged aluminum-lithium 2195 Alloy[J]. Journal of Materials Engineering and Performance, 2019, 28:5625-5638.
[25] 董金卫.轿车铝合金轮毂锻造成形新工艺技术研究[D].秦皇岛:燕山大学, 2007.
[26] 张振.锻造铝合金轮毂的工艺特点及检测方法研究[J].中国高新技术企业, 2015, 21:47-48.
[27] 陈炜,林忠钦,徐伟力,等.覆盖件拉延模型面的特征组装配建模技术[J].上海交通大学学报, 2001, 35(2):123-127.
[28] 何维均,宋鸿武,常海平,等.铸旋轮毂热旋压过程的数值模拟及工艺优化[J].精密成形工程, 2011, 3(2):6-10.
[29] 吴伯杰,赵殊.基于UGII覆盖件工艺补充面的参数化设计[J].现代制造工程, 2003(4):18-20.
[30] 张庆玲.先进的铝合金轮毂旋压成形技术[J].金属世界, 2008(5):52-54.
[31] 程应潮,刘罡,范国辉.国内外轿车覆盖件冲压模具设计概览[J].上海汽车, 2004(5):26-28.
[32] Tash M, Samuel F H, Mucciardi F, et al. Effect of metallurgical parameters on the hardness and microstruetural charact erization of as-cast and heat-treated 356 and 319 aluminum alloys[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2007, 443(1/2):185-201.
[33] 范宋杰,何国球,刘晓山,等. A356铝合金力学性能与微观结构[J].有色金属, 2008, 60(4):5-8.
[34] Niu G D, Wang J, Li J P, et al. Characterization of in-situ reinforced (Al, Si)3(Ti, Ce) precipitates in T6 treated A356-0.3 wt.% Ce-1.5 vol.% TiCN composite and its effects on mechanical properties[J]. Materials Characterization, 2022, 185:1-10.
[35] 刘宏磊,梁勇,郑宝全,等.多次人工时效对低压铸造A356.2铝合金轮毂力学性能的影响[J].轻合金加工技术, 2008(11):50-52.
[36] 何维均,宋鸿武,张丽娟,等.铸造A356铝合金的高速热变形行为[J].塑性工程学报, 2011, 18(2):71-75.
[37] 胡强,闫亮明,杜青春,等.压铸A356铝合金的热变形行为[J].特种铸造及有色合金, 2020, 40(10):1099-1102.
[38] 王清松,徐戊矫,吴道祥,等.变形态2219铝合金高温塑性变形的本构模型[J].铝加工, 2021(3):27-31.
[39] 加藤,乔士.用旋压法加工铝轮毂技术的开发[J].有色金属加工, 1997(5):36-39.
[40] 宋鸿武,李昌海,常海平,等.高强韧铝合金轮毂的轻量化铸旋新工艺[J].稀有金属, 2012, 36(4):630-634.
[41] 姜峰,张慧,李云峰,等.混合稀土变质对A356合金组织及力学性能的影响[J].热加工工艺, 2023, 56(3):68-71.
[42] Yi W, Liu G C, Lu Z, et al. Efficient alloy design of Srmodified A356 alloys driven by computational thermodynamics and machine learning[J]. Journal of Materials Science & Technology, 2022, 112:277-290.
[43] Haghshenas M, Zarei-Hanzaki A, Jahazi M. An investigation to the effect of deformation-heat treatment cycle on the eutectic morphology and mechanical properties of a Thixocast A356 alloy[J]. Materials Characterization, 2009, 60(8):817-823.
[44] 曾胜,常海平,张金,等. A356铝合金的高温流变行为及本构模型研究[J].锻压技术, 2022(4):242-248.
[45] Huang X S, Hu Z J, Zhu B W, et al. High temperature flow behavior of A356 aluminum alloy based on modified Johnson-Cook model and recrystallization model[J]. Joinal of Plasticity Engineering, 2021, 28(12):115-124.
[46] 姬广欣,周起涛,薛艳菲. A356铝合金轮毂铸旋新工艺的应用与毛坯设计[J].模具技术, 2019(2):12-15.
[47] 常海平,李昌海,万奇亮.感应加热在铸旋铝合金车轮中的应用[J].精密成形工程, 2016, 8(2):72-74.
[48] 徐世文,张立娟,常海平,等.铸旋铝合金车轮旋压模具的优化设计[J].精密成形工程, 2018, 10(2):122-125.
[49] Imamura Y, Ikawa K, Sakane Y, et al. Investigation of forming accuracy in mandrel-free hot-spinning[J]. Procedia Engineering, 2017, 207:1701-1706.
[50] 黄渊.铝合金轮毂二次旋压成型工艺研究[J].企业技术开发, 2019, 38(2):76-78.
[51] Hu Q, Yan L M, Du Q C, et al. Effect of the first pass reduction rate on spinning forming of hub during two wheels spinning[J]. Journal of Plasticity Engineering, 2022, 29(2):134-142.
[52] Wu X Y, Zhang H R, Chen H L, et al. Evolution of microstructure and mechanical properties of A356 aluminium alloy processed by hot spinning process[J]. China Foundry, 2017, 14(2):138-144.
[53] Huang C Q, Liu J X. Effects of hot spinning and heat treatment on the microstructure, texture, and mechanical properties of A356 wheel hubs[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2020, 51(1):289-298.
[54] Wang Z F, Ou C X, Wang M, et al. Mechanical properties and microstructure of A356-T6 aluminum alloy wheel hub based on casting-spinning process[J]. Materials Science Forum, 2021, 1036:3-10.
[55] 刘智冲,常海平,张立娟.影响A356铝合金车轮旋压成形品质的因素分析[J].精密成形工程, 2012, 4(3):30-33.
[56] 马桂艳. A356铝合金热变形机理和旋压工艺研究[D].沈阳:沈阳大学, 2012.
[57] 谭学菊. A356铝合金轮毂的旋压成形工艺研究[D].秦皇岛:燕山大学, 2018.
[58] 胡强.水冷压铸A356铝合金轮毂两旋轮旋压成形的研究[D].呼和浩特:内蒙古工业大学, 2021.
[59] 张丽娟.铸旋轮毂结构优化设计[J].锻压技术, 2017, 45(5):123-127.
[60] 胡强,闫亮明,杜青春,等.两旋轮旋压首道次压下率对轮毂旋压成形的影响[J].塑性工程学报, 2022, 29(2):134-142.
[61] 孟瑶.基于ANSYS的铝合金车轮旋压成形的模拟仿真与参数优化[D].长春:长春工业大学, 2017:6-8.
[62] 王永亮.铝合金轮毂旋压成形数值模拟技术研究[D].长春:长春理工大学, 2019.
[63] Guo Y M, Li M Z, Xu H Q, et al. Research on multipass hot spinning based on finite element simulation and experiment for aluminum alloy component[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(5/6/7/8):1995-2008.
[64] Chen S Y, Shu X D, Lu Y J. Effect of 6061 aluminum alloy wheel forging and spinning process parameters on forming quality[J]. Metalurgija, 2022, 61(2):317-320.
[65] Zhao G Y, Lu C J, Zhang R Y, et al. Uneven plastic deformation behavior of high-strength cast aluminum alloy tube in multi-pass hot power backward spinning[J]. The International Journal of Advanced Manufacturing Technology volume, 2017, 88:907-921.
Outlines

/