[1] 国家能源局.国家能源局发布2021年全国电力工业统计数据[EB/OL].(2022-01-26)[2022-07-29]. http://www.nea.gov.cn/2022-01/26/c_1310441589.htm.
[2] 周健奇."十四五"期间分布式光伏将充分释放潜力[N].人民政协报, 2020-12-15(7).
[3] Wood Mackenzie. Global wind turbine fleet to consume over 5.5Mt of copper by 2028[EB/OL].(2019-10-02)[2022-11-22]. https://www.woodmac.com/press-releases/global-wind-turbine-fleet-to-consume-over-5.5mt-of-copper-by-2028/.
[4] U. S. Geological Survey. Mineral commodity summaries 2022[R/OL].(2022-01-31)[2022-11-24] https://pubs.er.usgs.gov/publication/mcs2022.
[5] International Molybdenum Association. Global production and usage of molybdenum rose in Q22022[EB/OL].(2022-10-06)[2022-11-22]. https://www.imoa.info/molyb-denum-media-centre/latest-news/latest-news-details.php?objectID=683&lang=en.
[6] 唐萍芝,陈欣,王京.全球镍资源供需和产业结构分析[J].矿产勘查, 2022, 13(1):152-156.
[7] 王嫱.矿产品对外依存度计量方法模型与应用研究[J].中国国土资源经济, 2020, 33(9):60-67.
[8] Wei W D, Ge Z W, Geng Y, et al. Toward carbon neutral-ity:Uncovering constraints on critical minerals in the Chi nese power system[J]. Fundamental Research, 2022, 2(3):367-374.
[9] Klimenko V V, Ratner S V, Tereshin A G. Constraints im posed by key-material resources on renewable energy de velopment[J]. Renewable and Sustainable Energy Re-views, 2021, 144:111011.
[10] Wang P, Chen L Y, Ge J P, et al. Incorporating critical material cycles into metal-energy nexus of China's 2050 renewable transition[J]. Applied Energy, 2019, 253:113612.
[11] Golroudbary S R, Makarava I, Kraslawski A, et al. Glob-al environmental cost of using rare earth elements in green energy technologies[J]. Science of the Total Envi-ronment, 2022, 832:155022.
[12] Huber S T, Steininger K W. Critical sustainability issues in the production of wind and solar electricity genera-tion as well as storage facilities and possible solutions[J]. Journal of Cleaner Production, 2022, 339:130720.
[13] Ren K P, Tang X, Wang P, et al. Bridging energy and metal sustainability:Insights from China's wind power development up to 2050[J]. Energy, 2021, 227:120524.
[14] Zhou Y J, Li J W, Wang G S, et al. Assessing the shortto medium-term supply risks of clean energy minerals for China[J]. Journal of Cleaner Production, 2019, 215:217-225.
[15] 陈元千.对翁氏预测模型的推导及应用[J].天然气工业, 1996, 16(2):22-26.
[16] 黎斌林.基于广义翁氏模型与多循环Hubbert模型对全球石油峰值的预测[J].资源开发与市场, 2015, 31(4):427-430.
[17] Hubbert M K. Nuclear energy and the fossil fuel[J/OL]. Drilling and Production Practice, 1956.[2022-11-08]. https://www.resilience. org/stories/2006-03-08/nuclearenergy-and-fossil-fuels/.
[18] 胡建国,陈元千,张盛宗.预测油气田产量的新模型[J].石油学报, 1995(1):79-87.
[19] Feng L Y, Li J C, Pang X Q. China's oil reserve forecast and analysis based on peak oil models[J]. Energy Policy, 2008, 36(11):4149-4153.
[20] Wang X, Lei Y, Ge J, et al. Production forecast of China's rare earths based on the Generalized Weng model and policy recommendations[J]. Resources Policy, 2015, 43:11-18.
[21] Zhao X G, Wang W, Wang J Y. The policy effects of de-mand-pull and technology-push on the diffusion of wind power:A scenario analysis based on system dynamics approach[J]. Energy, 2022, 261:125224.
[22] 刘之琳,李江涛,唐伟,等.基于情景设置的全球能源发展趋势分析[J].中国煤炭, 2022, 48(3):15-22.
[23] Renewable Energy for the 21st Century. Renewables 2022 global status report[R]. Paris:Renewable Energy for the 21st Century, 2022.
[24] BloombergNEF. New energy outlook 2020[R]. New York:BloombergNEF, 2020.
[25] International Energy Agency. Technology roadmap:Chi-na wind energy development roadmap 2050[R/OL].(2011-10-31)[2022-03-07]. https://www.iea.org/reports/technology-roadmap-china-wind-energy-developmentroadmap-2050.
[26] International Renewable Energy Agency. World energy transitions outlook 2021[R/OL].(2022-03-29)[2022-11-24]. https://www.irena.org/Publications/2022/Mar/WorldEnergy-Transitions-Outlook-2022.
[27] Global Wind Energy Council. Global wind report 2022[R]. Brussels:GWEC, 2022.
[28] Zhou N, Lu H Y, Khanna N, et al. China energy out-look:Understanding China's energy and emissions trends 2020[R]. Berkeley:ETA, 2020.
[29] Deng X, Ge J P. Global wind power development leads to high demand for neodymium praseodymium (NdPr):A scenario analysis based on market and technology devel-opment from 2019 to 2040[J]. Journal of Cleaner Produc-tion, 2020, 277:123299.
[30] Schulze R, Buchert M. Estimates of global REE recy-cling potentials from NdFeB magnet material[J]. Resourc-es, Conservation and Recycling, 2016, 113:12-27.
[31] Elshkaki A, Shen L. Energy-material nexus:The im-pacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications[J]. Energy, 2019, 180:903-917.
[32] Nassar N T, Wilburn D R, Goonan T G. Byproduct met-al requirements for U. S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios[J]. Applied Energy, 2016, 183:1209-1226.
[33] Manberger A, Stenqvist B. Global metal flows in the re-newable energy transition:Exploring the of substitutes, technological mix and development[J]. Energy Policy, 2018, 119:226-241.
[34] Zeng X L, Xu M, Li J H. Examining the sustainability of China's nickel supply:1950-2050[J]. Resources, Conser-vation and Recycling, 2018, 139:188-193.
[35] 文博杰,代涛,韩中奎,等.中国铜资源在用存量与二次供应潜力[J].地球学报, 2023, 44(2):325-332.
[36] Elshkaki A, Graedel T E. Dynamic analysis of the global metals flows and stocks in electricity generation technol-ogies[J]. Journal of Cleaner Production, 2013, 59:260-273.
[37] Wang P, Li W, Kara S. Dynamic life cycle quantification of metallic elements and their circularity, efficiency, and leakages[J]. Journal of Cleaner Production, 2018, 174:1492-1502.
[38] Fizainea F, Court V. Renewable electricity producing technologies and metal depletion:A sensitivity analysis using the EROI[J]. Ecological Economics, 2015, 110:106-118.
[39] Valero A, Calvo G. Material bottlenecks in the future de-velopment of green technologies[J]. Renewable and Sus-tainable Energy Reviews, 2018, 93:178-200.
[40] Moss R L, Tzimas E, Kara H, et al. The potential risks from metals bottlenecks to the deployment of Strategic Energy Technologies[J]. Energy Policy, 2013, 55:556-564.
[41] Chen W Q, Graedel T E. Anthropogenic cycles of the el-ements:A critical review[J]. Environmental Science&Technology, 2012, 46(16):8574-8586.
[42] 落基山研究所,能源转型委员会.电力增长零碳化(2020-2030):中国实现碳中和的必经之路[R/OL].(2021-01-15)[2023-02-14]. https://www.energy-transi-tions. org/wp-content/uploads/2021/01/RMI_ETC_ChinaZero-Carbon-Electricity-Growth-report-2020_CN.pdf.
[43] BP outlook:2022 edition[R/OL].(2022-03-15)[2022-11-24]. https://www.bp.com.cn/content/dam/bp/country-sites/zh_cn/china/home/reports/bp-energy-outlook/2022/energy-outlook-2022-edition-cn.pdf.
[44] International Energy Agency. World energy outlook 2021[R]. Paris:International Energy Agency, 2021.
[45] 王晨阳,汪鹏,汤林彬,等.碳中和背景下中国电动车产业稀土需求预测[J].科技导报, 2022, 40(8):50-61.
[46] 陈占恒.稀土产业与市场的现状、问题和对策浅析[C]//第十一届中国包头·稀土产业论坛专家报告集.包头:中国稀土学会, 2019:6-8.
[47] 陈元千,胡建国.对翁氏模型建立的回顾及新的推导[J].中国海上油气地质, 1996, 8(5):317-324.
[48] 齐丁,王政,王建润.有色金属行业分析:稀土镨钕供需有望迎来重大拐点[R/OL].(2021-01-27)[2023-02-10]. https://m.hibor.com.cn/wap_detail.aspx?id=d9ffd12ba034e0fd1e5e1cf1b159d8a1.
[49] 张亮,杨卉芃,冯安生,等.全球钼矿资源现状及市场分析[J].矿产综合利用, 2019(3):11-16.
[50] 梁松.关于中非矿产资源合作的思考[J].经济师, 2022(9):101-103.
[51] 张臻悦,何正艳,徐志高,等.中国稀土矿稀土配分特征[J].稀土, 2016, 37(1):121-127.
[52] 杨俊峰,潘寻."十四五"中国锂动力电池产业关键资源供需分析[J].有色金属(冶炼部分), 2021(6):37-41.
[53] 东方证券:新能源新动能2025年或将拉动铜需求7%[EB/OL].(2023-02-02)[2023-02-10]. https://news.smm.cn/news/101448063.
[54] 张邦胜,刘贵清,刘昱辰,等. 2020年硫酸镍市场分析[J].中国资源综合利用, 2021, 39(1):86-91.