Exclusive:Development and Governance of Strategic Mineral Resources

Rising imbalance between supply and demand of strategic metal minerals: A study based on wind power industry

  • DUAN Yue ,
  • GE Jianping
Expand
  • 1. School of Economics and Management, China University of Geosciences (Beijing), Beijing 100083, China;
    2. Institute of Natural Resources Strategic Development, China University of Geosciences (Beijing), Beijing 100083, China

Received date: 2022-11-28

  Revised date: 2023-02-14

  Online published: 2024-04-19

Abstract

With the transformation of China's energy structure, the installation scale of wind power continues to expand and the demand for strategic minerals in all segments of the wind power becomes a strategic issue of the high-quality development of China's wind power industry. In this paper, a generalized Weng's model is used to forecast the production and simulate the mining paths of seven raw metals required to cultivate the wind power industry chain:neodymium, praseodymium, terbium, dysprosium, molybdenum, nickel and copper. At the same time, the future demands for the aforementioned seven raw metals are calculated under different scenarios where market share, technological progress and recycling are taken into account. Based on this, the supply and demand status of strategic metal mineral industry chain is analized and policys to promote sustainable supply of strategic minerals for the power industry chain are suggested.

Cite this article

DUAN Yue , GE Jianping . Rising imbalance between supply and demand of strategic metal minerals: A study based on wind power industry[J]. Science & Technology Review, 2024 , 42(5) : 92 -108 . DOI: 10.3981/j.issn.1000-7857.2024.05.009

References

[1] 国家能源局.国家能源局发布2021年全国电力工业统计数据[EB/OL].(2022-01-26)[2022-07-29]. http://www.nea.gov.cn/2022-01/26/c_1310441589.htm.
[2] 周健奇."十四五"期间分布式光伏将充分释放潜力[N].人民政协报, 2020-12-15(7).
[3] Wood Mackenzie. Global wind turbine fleet to consume over 5.5Mt of copper by 2028[EB/OL].(2019-10-02)[2022-11-22]. https://www.woodmac.com/press-releases/global-wind-turbine-fleet-to-consume-over-5.5mt-of-copper-by-2028/.
[4] U. S. Geological Survey. Mineral commodity summaries 2022[R/OL].(2022-01-31)[2022-11-24] https://pubs.er.usgs.gov/publication/mcs2022.
[5] International Molybdenum Association. Global production and usage of molybdenum rose in Q22022[EB/OL].(2022-10-06)[2022-11-22]. https://www.imoa.info/molyb-denum-media-centre/latest-news/latest-news-details.php?objectID=683&lang=en.
[6] 唐萍芝,陈欣,王京.全球镍资源供需和产业结构分析[J].矿产勘查, 2022, 13(1):152-156.
[7] 王嫱.矿产品对外依存度计量方法模型与应用研究[J].中国国土资源经济, 2020, 33(9):60-67.
[8] Wei W D, Ge Z W, Geng Y, et al. Toward carbon neutral-ity:Uncovering constraints on critical minerals in the Chi nese power system[J]. Fundamental Research, 2022, 2(3):367-374.
[9] Klimenko V V, Ratner S V, Tereshin A G. Constraints im posed by key-material resources on renewable energy de velopment[J]. Renewable and Sustainable Energy Re-views, 2021, 144:111011.
[10] Wang P, Chen L Y, Ge J P, et al. Incorporating critical material cycles into metal-energy nexus of China's 2050 renewable transition[J]. Applied Energy, 2019, 253:113612.
[11] Golroudbary S R, Makarava I, Kraslawski A, et al. Glob-al environmental cost of using rare earth elements in green energy technologies[J]. Science of the Total Envi-ronment, 2022, 832:155022.
[12] Huber S T, Steininger K W. Critical sustainability issues in the production of wind and solar electricity genera-tion as well as storage facilities and possible solutions[J]. Journal of Cleaner Production, 2022, 339:130720.
[13] Ren K P, Tang X, Wang P, et al. Bridging energy and metal sustainability:Insights from China's wind power development up to 2050[J]. Energy, 2021, 227:120524.
[14] Zhou Y J, Li J W, Wang G S, et al. Assessing the shortto medium-term supply risks of clean energy minerals for China[J]. Journal of Cleaner Production, 2019, 215:217-225.
[15] 陈元千.对翁氏预测模型的推导及应用[J].天然气工业, 1996, 16(2):22-26.
[16] 黎斌林.基于广义翁氏模型与多循环Hubbert模型对全球石油峰值的预测[J].资源开发与市场, 2015, 31(4):427-430.
[17] Hubbert M K. Nuclear energy and the fossil fuel[J/OL]. Drilling and Production Practice, 1956.[2022-11-08]. https://www.resilience. org/stories/2006-03-08/nuclearenergy-and-fossil-fuels/.
[18] 胡建国,陈元千,张盛宗.预测油气田产量的新模型[J].石油学报, 1995(1):79-87.
[19] Feng L Y, Li J C, Pang X Q. China's oil reserve forecast and analysis based on peak oil models[J]. Energy Policy, 2008, 36(11):4149-4153.
[20] Wang X, Lei Y, Ge J, et al. Production forecast of China's rare earths based on the Generalized Weng model and policy recommendations[J]. Resources Policy, 2015, 43:11-18.
[21] Zhao X G, Wang W, Wang J Y. The policy effects of de-mand-pull and technology-push on the diffusion of wind power:A scenario analysis based on system dynamics approach[J]. Energy, 2022, 261:125224.
[22] 刘之琳,李江涛,唐伟,等.基于情景设置的全球能源发展趋势分析[J].中国煤炭, 2022, 48(3):15-22.
[23] Renewable Energy for the 21st Century. Renewables 2022 global status report[R]. Paris:Renewable Energy for the 21st Century, 2022.
[24] BloombergNEF. New energy outlook 2020[R]. New York:BloombergNEF, 2020.
[25] International Energy Agency. Technology roadmap:Chi-na wind energy development roadmap 2050[R/OL].(2011-10-31)[2022-03-07]. https://www.iea.org/reports/technology-roadmap-china-wind-energy-developmentroadmap-2050.
[26] International Renewable Energy Agency. World energy transitions outlook 2021[R/OL].(2022-03-29)[2022-11-24]. https://www.irena.org/Publications/2022/Mar/WorldEnergy-Transitions-Outlook-2022.
[27] Global Wind Energy Council. Global wind report 2022[R]. Brussels:GWEC, 2022.
[28] Zhou N, Lu H Y, Khanna N, et al. China energy out-look:Understanding China's energy and emissions trends 2020[R]. Berkeley:ETA, 2020.
[29] Deng X, Ge J P. Global wind power development leads to high demand for neodymium praseodymium (NdPr):A scenario analysis based on market and technology devel-opment from 2019 to 2040[J]. Journal of Cleaner Produc-tion, 2020, 277:123299.
[30] Schulze R, Buchert M. Estimates of global REE recy-cling potentials from NdFeB magnet material[J]. Resourc-es, Conservation and Recycling, 2016, 113:12-27.
[31] Elshkaki A, Shen L. Energy-material nexus:The im-pacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications[J]. Energy, 2019, 180:903-917.
[32] Nassar N T, Wilburn D R, Goonan T G. Byproduct met-al requirements for U. S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios[J]. Applied Energy, 2016, 183:1209-1226.
[33] Manberger A, Stenqvist B. Global metal flows in the re-newable energy transition:Exploring the of substitutes, technological mix and development[J]. Energy Policy, 2018, 119:226-241.
[34] Zeng X L, Xu M, Li J H. Examining the sustainability of China's nickel supply:1950-2050[J]. Resources, Conser-vation and Recycling, 2018, 139:188-193.
[35] 文博杰,代涛,韩中奎,等.中国铜资源在用存量与二次供应潜力[J].地球学报, 2023, 44(2):325-332.
[36] Elshkaki A, Graedel T E. Dynamic analysis of the global metals flows and stocks in electricity generation technol-ogies[J]. Journal of Cleaner Production, 2013, 59:260-273.
[37] Wang P, Li W, Kara S. Dynamic life cycle quantification of metallic elements and their circularity, efficiency, and leakages[J]. Journal of Cleaner Production, 2018, 174:1492-1502.
[38] Fizainea F, Court V. Renewable electricity producing technologies and metal depletion:A sensitivity analysis using the EROI[J]. Ecological Economics, 2015, 110:106-118.
[39] Valero A, Calvo G. Material bottlenecks in the future de-velopment of green technologies[J]. Renewable and Sus-tainable Energy Reviews, 2018, 93:178-200.
[40] Moss R L, Tzimas E, Kara H, et al. The potential risks from metals bottlenecks to the deployment of Strategic Energy Technologies[J]. Energy Policy, 2013, 55:556-564.
[41] Chen W Q, Graedel T E. Anthropogenic cycles of the el-ements:A critical review[J]. Environmental Science&Technology, 2012, 46(16):8574-8586.
[42] 落基山研究所,能源转型委员会.电力增长零碳化(2020-2030):中国实现碳中和的必经之路[R/OL].(2021-01-15)[2023-02-14]. https://www.energy-transi-tions. org/wp-content/uploads/2021/01/RMI_ETC_ChinaZero-Carbon-Electricity-Growth-report-2020_CN.pdf.
[43] BP outlook:2022 edition[R/OL].(2022-03-15)[2022-11-24]. https://www.bp.com.cn/content/dam/bp/country-sites/zh_cn/china/home/reports/bp-energy-outlook/2022/energy-outlook-2022-edition-cn.pdf.
[44] International Energy Agency. World energy outlook 2021[R]. Paris:International Energy Agency, 2021.
[45] 王晨阳,汪鹏,汤林彬,等.碳中和背景下中国电动车产业稀土需求预测[J].科技导报, 2022, 40(8):50-61.
[46] 陈占恒.稀土产业与市场的现状、问题和对策浅析[C]//第十一届中国包头·稀土产业论坛专家报告集.包头:中国稀土学会, 2019:6-8.
[47] 陈元千,胡建国.对翁氏模型建立的回顾及新的推导[J].中国海上油气地质, 1996, 8(5):317-324.
[48] 齐丁,王政,王建润.有色金属行业分析:稀土镨钕供需有望迎来重大拐点[R/OL].(2021-01-27)[2023-02-10]. https://m.hibor.com.cn/wap_detail.aspx?id=d9ffd12ba034e0fd1e5e1cf1b159d8a1.
[49] 张亮,杨卉芃,冯安生,等.全球钼矿资源现状及市场分析[J].矿产综合利用, 2019(3):11-16.
[50] 梁松.关于中非矿产资源合作的思考[J].经济师, 2022(9):101-103.
[51] 张臻悦,何正艳,徐志高,等.中国稀土矿稀土配分特征[J].稀土, 2016, 37(1):121-127.
[52] 杨俊峰,潘寻."十四五"中国锂动力电池产业关键资源供需分析[J].有色金属(冶炼部分), 2021(6):37-41.
[53] 东方证券:新能源新动能2025年或将拉动铜需求7%[EB/OL].(2023-02-02)[2023-02-10]. https://news.smm.cn/news/101448063.
[54] 张邦胜,刘贵清,刘昱辰,等. 2020年硫酸镍市场分析[J].中国资源综合利用, 2021, 39(1):86-91.
Outlines

/