Exclusive: Carbon Neutrality and Green and Low-carbon Development

A collaborative development framework of coal-related resources under carbon peaking and carbon neutrality goals

  • WANG Fangtian ,
  • ZHANG Chenkai ,
  • ZHANG Cun ,
  • JIA Sheng
Expand
  • 1. School of Mines, State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining Technology, Xuzhou 221116, China;
    2. School of Energy and Mining, China University of Mining Technology-Beijing, Beijing 100083, China

Received date: 2023-02-16

  Revised date: 2023-03-27

  Online published: 2024-05-15

Abstract

Combined with the characteristics of coal-related resource endowment, in this article a collaborative development and utilization concept of "safe and efficient, green and low-carbon, energy-saving and consumption reduction, exhaustion of mining, and turning waste into treasure" is proposed, the positioning of coal resources in the process of carbon neutrality is discussed, and a technical system for low-carbon and zero-carbon development of coal is constructed. It is shown that under the dual carbon goals, the coal mining industry will go through three stages:coal dominance, energy coupling, and new energy dominance. Combined with the characteristics of coal-related re-sources, and focusing on coal-heat, coal-gas, coal-water, and other associated resources in coal measures, the article reviews the development direction, status quo, and prospects of multiple CCUS (carbon capture, utilization, and storage) technologies for collaborative development of associated resources such as low carbon, zero carbon, and so on. There is an urgent need for CCUS technologies with coal mine characteristics, such as high-carbon material filling and mining in goaf areas, collaborative biomass energy development in mining areas, coalbed methane substitution mining and coal underground hydrogen production technology. Shendong mining area has realized coal water comining relying on underground reservoir, and the annual increase in carbon sequestration can reach 5085t. Based on the innovation of design and construction concept of underground reservoir in coal mine, a collaborative technology of CO2 storage and geothermal water extraction in deep mine goaf is also proposed.

Cite this article

WANG Fangtian , ZHANG Chenkai , ZHANG Cun , JIA Sheng . A collaborative development framework of coal-related resources under carbon peaking and carbon neutrality goals[J]. Science & Technology Review, 2024 , 42(7) : 40 -55 . DOI: 10.3981/j.issn.1000-7857.2023.02.00248

References

[1] 谢和平,任世华,谢亚辰,等.碳中和目标下煤炭行业发展机遇[J].煤炭学报, 2021, 46(7):2197-2211.
[2] 谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J].煤炭学报, 2019, 44(7):1949-1960.
[3] 平新乔,郑梦圆,曹和平.中国碳排放强度变化趋势与"十四五"时期碳减排政策优化[J].改革, 2020(11):37-
[4] 康红普,王国法,王双明,等.煤炭行业高质量发展研究[J].中国工程科学, 2021, 23(5):130-138.
[5] 陈浮,于昊辰,卞正富,等.碳中和愿景下煤炭行业发展的危机与应对[J].煤炭学报, 2021, 46(6):1808-1820.
[6] 袁亮.我国煤炭工业高质量发展面临的挑战与对策[J].中国煤炭, 2020, 46(1):6-12.
[7] 谢和平,钱鸣高,彭苏萍,等.煤炭科学产能及发展战略初探[J].中国工程科学, 2011, 13(6):44-50.
[8] 张胜利,焦洪桥,杨靖华,等.碳中和背景下现代煤化工产业生态链布局和创新发展路径[J].中国煤炭, 2022, 48(8):7-13.
[9] 卞正富,于昊辰,韩晓彤.碳中和目标背景下矿山生态修复的路径选择[J].煤炭学报, 2022, 47(1):449-459.
[10] 袁亮.推动我国关闭/废弃矿井资源精准开发利用研究[J].煤炭经济研究, 2019, 39(5):1.
[11] 李孜军,徐宇,贾敏涛,等.深部矿井岩层地热能协同开采治理热害数值模拟[J].中南大学学报(自然科学版), 2021, 52(3):671-680.
[12] 刘晓鑫,胡汉华.我国深部矿井热害治理设想和展望[J].矿业研究与开发, 2011, 31(1):84-87.
[13] 徐宇,李孜军,贾敏涛,等.深部矿井热害治理协同地热能开采构想及方法分析[J].中国有色金属学报, 2022, 32(5):1515-1527.
[14] 何满潮,徐敏. HEMS深井降温系统研发及热害控制对策[J].岩石力学与工程学报, 2008, 27(7):1353-1361.
[15] 蓝航,陈东科,毛德兵.我国煤矿深部开采现状及灾害防治分析[J].煤炭科学技术, 2016, 44(1):39-46.
[16] 顾大钊,张勇,曹志国.我国煤炭开采水资源保护利用技术研究进展[J].煤炭科学技术, 2016, 44(1):1-7.
[17] 张吉雄,汪集暘,周楠,等.深部矿山地热与煤炭资源协同开发技术体系研究[J].工程科学学报, 2022, 44(10):1682-1693.
[18] 沈明云.热泵技术与应用[J].工程建设与设计, 2022(12):56-58.
[19] Hall A, Scott J A, Shang H. Geothermal energy recovery from underground mines[J]. Renewable and Sustainable Energy Reviews, 2011, 15(2):916-924.
[20] Menéndez J, Ordónez A, Fernández-Oro J M, et al. Feasibility analysis of using mine water from abandoned coal mines in Spain for heating and cooling of buildings[J]. Renewable Energy, 2020, 146:1166-1176.
[21] 向艳蕾,杨允,闫文瑞,等.煤矿回风余热资源利用技术现状与展望[J].煤质技术, 2021, 36(6):77-83.
[22] 吕向阳,翟宇,赵旭.整体式热管换热技术在煤矿井口防冻系统中的应用[J].煤炭工程, 2021, 53(3):57-61.
[23] 辛嵩,张兆鹏.矿井回风余热分离式热管回收技术研究[J].矿业研究与开发, 2020, 40(11):160-164.
[24] 谢友泉,高辉,苏志国,等.废弃矿井地热资源的开发利用[J].太阳能, 2020(10):13-18.
[25] Wang X X, Zhou F B, Ling Y H, et al. Overview and outlook on utilization technologies of low-concentration coal mine methane[J]. Energy&Fuels, 2021, 35(19):15398-15423.
[26] Lu B, Shen Y H, Tang Z L, et al. Vacuum pressure swing adsorption process for coalbed me-thane enrichment[J]. Chinese Journal of Chemical Engineering, 2021, 32:264-280.
[27] 张村,屠世浩,袁永,等.卸压瓦斯抽采的工作面推进速度敏感性分析[J].采矿与安全工程学报, 2017, 34(6):1240-1248.
[28] 张村,屠世浩,袁永,等.卸压开采地面钻井抽采的数值模拟研究[J].煤炭学报, 2015, 40(增刊2):392-400.
[29] Wang F T, Ren T, Tu S H, et al. Implementation of underground longhole directional drilling technology for greenhouse gas mitigation in Chinese coal mines[J]. International Journal of Greenhouse Gas Control, 2012, 11:290-303.
[30] Zhang C, Zhang L, Tu S H, et al. Experimental and numerical study of the influence of gas pressure on gas permeability in pressure relief gas drainage[J]. Transport in Porous Media, 2018, 124(3):995-1015.
[31] Zhang C, Tu S H, Bai Q S, et al. Evaluating pressure-relief mining performances based on surface gas venthole extraction data in longwall coal mines[J]. Journal of Natural Gas Science and Engineering, 2015, 24:431-440.
[32] Wang F T, Zhang C, Liang N N. Gas permeability evolution mechanism and comprehensive gas drainage technology for thin coal seam mining[J]. Energies, 2017, 10(9):1382.
[33] Zhang C, Tu S H, Chen M, et al. Pressure-relief and methane production performance of pressure relief gas extraction technology in the longwall mining[J]. Journal of Geophysics and Engineering, 2017, 14(1):77-89.
[34] Abd A A, Othman M R, Naji S Z, et al. Methane enrichment in biogas mixture using pressure swing adsorption:Process fundamental and design parameters[J]. Materials Today Sustainability, 2021(11/12):100063.
[35] 金刚,王康.矿井乏风瓦斯蓄热氧化发电关键技术研究[J].科学技术创新, 2020(26):193-194.
[36] 高鹏飞.乏风瓦斯提浓利用技术现状及展望[J].矿业安全与环保, 2017, 44(3):95-99.
[37] 李强,龙伍见,霍春秀.矿井乏风瓦斯氧化发电技术研究进展[J].矿业安全与环保, 2012, 39(4):81-84.
[38] 原丽俊.煤矿通风瓦斯氧化技术及氧化热利用方式探讨[J].石化技术, 2020, 27(1):268-269.
[39] 李海波.煤矿通风瓦斯氧化技术及氧化热利用方式[J].黑龙江科学, 2021, 12(16):106-107.
[40] 韩甲业,应中宝.我国低浓度煤矿瓦斯利用技术研究[J].中国煤层气, 2012, 9(6):39-41.
[41] 何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报, 2005, 24(16):2803-2813.
[42] 顾大钊.煤矿地下水库理论框架和技术体系[J].煤炭学报, 2015, 40(2):239-246.
[43] 张村,贾胜,吴山西,等.基于矿井地下水库的煤矿采空区地下空间利用模式与关键技术[J].科技导报, 2021, 39(13):36-46.
[44] 张村,宋子玉,赵毅鑫,等.矿井地下水库破碎岩体运移的DEM-CFD耦合分析[J].采矿与岩层控制工程学报, 2021, 3(4):85-95.
[45] 沈照理,王焰新,郭华明.水-岩相互作用研究的机遇与挑战[J].地球科学, 2012, 37(2):207-219.
[46] 张村,韩鹏华,王方田,等.采动水浸作用下矿井地下水库残留煤柱稳定性[J].中国矿业大学学报, 2021, 50(2):220-227, 247.
[47] 张庆,罗绍河,赵丽,等.有机氮和"三氮"在西部煤矿区地下水库迁移转化的实验研究[J].煤炭学报, 2019, 44(3):900-906.
[48] 张凯,高举,蒋斌斌,等.煤矿地下水库水-岩相互作用机理实验研究[J].煤炭学报, 2019, 44(12):3760-3772.
[49] 谢和平,侯正猛,高峰,等.煤矿井下抽水蓄能发电新技术:原理、现状及展望[J].煤炭学报, 2015, 40(5):965-972.
[50] 李庭,顾大钊,李井峰,等.基于废弃煤矿采空区的矿井水抽水蓄能调峰系统构建[J].煤炭科学技术, 2018, 46(9):93-98.
[51] 张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术, 2008, 32(7):1-9.
[52] 卞正富,朱超斌,周跃进,等.黄河流域九省区废弃矿井抽水蓄能利用潜力评估[J].煤田地质与勘探, 2022, 50(12):51-64.
[53] Fan J Y, Xie H P, Chen J, et al. Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs[J]. Applied Energy, 2020, 258:114007.
[54] Zhang C, Wang F T, Bai Q S. Underground space utilization of coalmines in China:A review of underground water reservoir construction[J]. Tunnelling and Underground Space Technology, 2021, 107:103657.
[55] 孙升林,吴国强,曹代勇,等.煤系矿产资源及其发展趋势[J].中国煤炭地质, 2014, 26(11):1-11.
[56] 崔艳.我国煤系共伴生矿产资源分布与开发现状[J].洁净煤技术, 2018, 24(增刊1):27-32.
[57] 王文,杨昆,何云,等.煤-气交叉开采区天然气井防碰撞预警技术研究[J].矿业科学学报, 2022, 7(4):490-497.
[58] 袁亮,张平松.煤炭精准开采地质保障技术的发展现状及展望[J].煤炭学报, 2019, 44(8):2277-2284.
[59] 代俊峰,李增华,许德如,等.煤型关键金属矿产研究进展[J].大地构造与成矿学, 2021, 45(5):963-982.
[60] 宁树正,曹代勇,朱士飞,等.煤系矿产资源综合评价技术方法探讨[J].中国矿业, 2019, 28(1):73-79.
[61] 王文,任建东,王付斌,等.鄂尔多斯盆地"煤气走廊"开采模式研究[J].金属矿山, 2019(10):23-31.
[62] 李嘉豪,王怀林,肖前华,等.全球CO2驱油及封存技术发展现状[J].重庆科技学院学报(自然科学版), 2022, 24(4):103-108.
[63] 冯潇婷,何耀宇.碳中和视角下的煤炭工业技术创新[J].能源技术与管理, 2022, 47(5):49-51, 90.
[64] 杨方亮,许红娜."十四五"煤炭行业生态环境保护与资源综合利用发展路径分析[J].中国煤炭, 2021, 47(5):73-82.
[65] 何学秋,田向辉,宋大钊.煤层CO2安全封存研究进展与展望[J].煤炭科学技术, 2022, 50(1):212-219.
[66] 张贤,李凯,马乔,等.碳中和目标下CCUS技术发展定位与展望[J].中国人口·资源与环境, 2021, 31(9):29-33.
[67] 刘荣,罗海峰,熊登宇,等.生物质燃烧技术研究现状[J].农业工程与装备, 2022, 49(1):8-14.
[68] 刘淑琴,畅志兵,刘金昌.深部煤炭原位气化开采关键技术及发展前景[J].矿业科学学报, 2021, 6(3):261-270.
[69] 侯东升,梁卫国,张倍宁,等. CO2驱替煤层CH4中混合气体渗流规律的研究[J].煤炭学报, 2019, 44(11):3463-3471.
[70] 曹军文,张文强,李一枫,等.中国制氢技术的发展现状[J].化学进展, 2021, 33(12):2215-2244.
[71] 王方田,邵栋梁,牛滕冲,等.浅埋高强度开采回撤巷道煤柱受载特征及累积损伤机制[J].岩石力学与工程学报, 2022, 41(6):1148-1159.
[72] Wang F T, Tu S H, Zhang C, et al. Evolution mechanism of water-flowing zones and control technology for longwall mining in shallow coal seams beneath gully topography[J]. Environmental Earth Sciences, 2016, 75(19):1309.
[73] 王方田,梁宁宁,李岗,等.复杂应力环境煤柱坝体损伤破坏规律研究[J].采矿与安全工程学报, 2019, 36(6):1145-1152.
[74] 方精云,郭兆迪,朴世龙,等. 1981-2000年中国陆地植被碳汇的估算[J].中国科学(D辑:地球科学), 2007, 37(6):804-812.
[75] 安英莉,卞正富,戴文婷,等.煤炭开采形成的碳源/碳汇分析:以徐州贾汪矿区为例[J].中国矿业大学学报, 2017, 46(2):415-422.
Outlines

/