Exclusive: Carbon Neutrality and Green and Low-carbon Development

Water-land-energy nexus analysis of coal-based cities: A case study of Huainan

  • YE Yuanyuan ,
  • WU Huijun ,
  • WANG Qianqian ,
  • DAI Chengjuan
Expand
  • School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China

Received date: 2023-07-22

  Revised date: 2023-11-27

  Online published: 2024-05-15

Abstract

Coal-based cities are facing the challenge of low-carbon development while coal-fired power generation consumes large amounts of water, land, and energy. We use life cycle assessment and nexus theory to establish a model of coal life-cycle with water-land-energy nexus. Based on the model, we quantify the actual total energy, water, and land consumptions associated with the activities throughout the life cycle of coal-fired power generation of Huainan City in 2020. In terms of the life cycle stages, the power generation stage accounted for the highest consumptions of water, land, and energy, followed by the mining stage,while the processing stage had the lowest consumptions. The power generation stage consumed 60.9% of total water, 84.5% of total land, and 95.3% of total energy, respectively. In terms of the total consumption, the water, land and energy consumptions of the entire life cycle of coal-fired power generation were 9.38×108 m3, 4.79×105 hm2, and 2.15×107 tce, respectively. Direct consumptions accounted for 91.2% and 98.9% of water and energy, respectively, while indirect consumption accounted for 88.2% of land. Thus, the power generation stage and the direct consumption were the primary linkages in the entire life cycle of coalfired power generation. It is necessary to implement scientific and effective measures to especially reduce the direct water, land, and energy consumptions in the power generation stage. We intend to provide not only a new accounting method of resource consumption but also a reference of sustainable development for coal-based cities in China.

Cite this article

YE Yuanyuan , WU Huijun , WANG Qianqian , DAI Chengjuan . Water-land-energy nexus analysis of coal-based cities: A case study of Huainan[J]. Science & Technology Review, 2024 , 42(7) : 56 -65 . DOI: 10.3981/j.issn.1000-7857.2023.08.01295

References

[1] 中华人民共和国国家统计局.中国统计年鉴2020[M].北京:中国统计出版社, 2021.
[2] 国家统计局能源统计司.中国能源统计年鉴2020[M].北京:中国统计出版社, 2021.
[3] Wu Q Y, Tan C, Wang D P, et al. How carbon emission prices accelerate net zero:Evidence from China's coalfired power plants[J]. Energy Policy, 2023, 177:113524.1-113524.11.
[4] Zheng Y X, Hong J K, Qin W, et al. Managing waterland-food nexus towards resource efficiency improvement:A superedge-based analysis of China[J]. Journal of Environmental Management, 2023, 325:116607.1-116607.12.
[5] Li Y Q, Zhang J, Song Y Y. Comprehensive comparison and assessment of three models evaluating water resource carrying capacity in Beijing, China[J]. Ecological Indicators, 2022, 143:109305.1-109305.12
[6] Lourenço I B, Guimarães L F, Alves M B, et al. Land as a sustainable resource in city planning:The use of open spaces and drainage systems to structure environmental and urban needs[J]. Journal of Cleaner Production, 2020, 276:123096.1-123096.19.
[7] Zhang M, Wang J M, Feng Y. Temporal and spatial change of land use in a large-scale opencast coal mine area:A complex network approach[J]. Land Use Policy, 2019, 86:375-386.
[8] Qu L L, Li Y R, Feng W L. Spatial-temporal differentiation of ecologically-sustainable land across selected settlements in China:An urban-rural perspective[J]. Ecological Indicators, 2020, 112:105783.1-105783.10.
[9] Wang N, Ren Y X, Zhu T, et al. Life cycle carbon emission modelling of coal-fired power:Chinese case[J]. Energy, 2018, 162:841-852.
[10] Zhang C, Chen X X, Li Y, et al. Water-energy-food nexus:Concepts, questions and methodologies[J]. Journal of Cleaner Production, 2018, 195:625-639.
[11] Xiang X Z, Jia S F. China's water-energy nexus:Assessment of water-related energy use[J]. Resources, Conservation and Recycling, 2019, 144:32-38.
[12] Tang Q, Wang J M, Jing Z R, et al. Response of ecological vulnerability to land use change in a resource-based city, China[J]. Resources Policy, 2021, 74:102324.1-102324.11.
[13] Li Y F, Li Y, Zhou Y, et al. Investigation of a coupling model of coordination between urbanization and the environment[J]. Journal of Environmental Management, 2012, 98(1):127-133.
[14] Wang X C, Klemeš J J, Wang Y T, et al. Water-energycarbon emissions nexus analysis of China:An environmental input-output model-based approach[J]. Applied Energy, 2020, 261:114431.1-114431.12.
[15] Deng C X, Li R R, Xie B G, et al. Impacts of the integrated pattern of water and land resources use on agricultural greenhouse gas emissions in China during 2006-2017:A water-land-energy-emissions nexus analysis[J]. Journal of Cleaner Production, 2021, 308:127221.1-127221.18.
[16] Silalertruksa T, Gheewala S H. Land-water-energy nexus of sugarcane production in Thailand[J]. Journal of Cleaner Production, 2018, 182:521-528.
[17] Feng M Y, Zhao R Q, Huang H P, et al. Water-energycarbon nexus of different land use types:The case of Zhengzhou, China[J]. Ecological Indicators, 2022, 141:109073.1-109073.12.
[18] Wang D F, Meng F X, Yuan Q L, et al. Cross-sectoral urban energy-water-land nexus framework within a multiscale economy:The case of Chinese megacities[J]. Journal of Cleaner Production, 2022, 376:134199.1-134199.12.
[19] Liang M S, Huang G H, Chen J P, et al. Energy-watercarbon nexus system planning:A case study of Yangtze River Delta urban agglomeration, China[J]. Applied Energy, 2022, 308:118144.1-118144.19.
[20] 中华人民共和国中央人民政府.全国资源型城市可持续发展规划(2013-2020年)[EB/OL].(2013-12-03)[2023-05-31]. http://www.gov.cn/zwgk/2013-12/03/content_2540070.htm.
[21] 安徽省人民政府发展研究中心."煤电之都"淮南的突围之路[EB/OL].(2022-01-07)[2023-05-31]. http://dss.ah.gov.cn/ywdt/dszc/1207920391.html.
[22] 张琪,郑刘根,刘辉,等.煤炭资源型城市生态-经济-社会协调发展分析——以淮南市为例[J].应用生态学报, 2019, 30(12):4313-4322.
[23] 王然,袁一仁.我国矿业经济区工业化与资源环境协调演化规律研究[J].生态经济, 2016, 32(2):69-73, 93.
[24] 淮南市统计局,国家统计局淮南调查队.淮南统计年鉴2021[M].北京:中国统计出版社, 2021.
[25] Wang N, Shen R F, Wen Z G, et al. Life cycle energy efficiency evaluation for coal development and utilization[J]. Energy, 2019, 179:1-11.
[26] 闫书琪,李素梅,吕鹤,等.基于混合LCA的新疆地区电力生产水足迹分析及碳中和目标下的变化[J].气候变化研究进展, 2022, 18(3):294-304.
[27] Li J J, Wang Y G, Xu D P, et al. High-resolution analysis of life-cycle carbon emissions from China's coalfired power industry:A provincial perspective[J]. International Journal of Greenhouse Gas Control, 2020, 100:103110.1-103110.15.
[28] 郑泽晨.淮南城市发展调查报告——以煤炭行业为视角[J].当代化工研究, 2021, 88(11):186-188.
[29] 陈倩云.中国主要能源产品水足迹量化与虚拟水流动格局研究[D].咸阳:西北农林科技大学水利与工程建筑学院, 2019.
[30] Zhang X X, Liu J G, Tang Y, et al. China's coal-fired power plants impose pressure on water resources[J]. Journal of Cleaner Production, 2017, 161:1171-1179.
[31] Nishith B D, Santanu B. Encyclopedia of sustainable technologies[M]. India:Elsevier, 2017:157-163.
[32] 那威,王晗,侯静,等.基于泰勒级数神经网络方法的我国公共建筑和工业建筑面积数据分析(1)[J].暖通空调, 2017, 47(11):7-11.
[33] 国家统计局城市社会经济调查司.中国城市建设统计年鉴2020[M].北京:中国统计出版社, 2020.
[34] Zhu Y N, Jiang S, Zhao Y, et al. Life-cycle-based water footprint assessment of coal-fired power generation in China[J]. Journal of Cleaner Production, 2020, 254:120098.1-120098.11.
[35] Xie X M, Zhang T T, Gu J C, et al. Water footprint assessment of coal-based fuels in China:Exploring the impact of coal-based fuels development on water resources[J]. Journal of Cleaner Production, 2018, 196:604-614.
[36] 中华人民共和国生态环境部.污水综合排放标准:GB 8978-1996[S].北京:中国环境科学出版社, 1996.
[37] 国家环境保护总局.地表水环境质量标准:GB 3838-2002[S].北京:中国标准出版社, 2002.
[38] Aldaya M M, Chapagain A K, HoekstraA Y, et al. The water footprint assessment manual[M]. London:Eearthscan, 2011.
[39] 王丹阳,李景保,叶亚亚,等.一种改进的灰水足迹计算方法[J].自然资源学报, 2015, 30(12):2120-2130.
[40] Zhang Y Y, Wang J Q, Zhang L M, et al. Optimization of China's electric power sector targeting water stress and carbon emissions[J]. Applied Energy, 2020, 271:115221.1-115221.10.
[41] Wang J M, Wang R G, Zhu Y C, et al. Life cycle assessment and environmental cost accounting of coal-fired power generation in China[J]. Energy Policy, 2018, 115:374-384.
[42] 赵晶,吴迪,回晓莹,等.我国火力发电行业用耗水情况与节水潜力分析[J].华北水利水电学院学报, 2021, 42(2):95-103.
[43] 范立民.保水采煤面临的科学问题[J].煤炭学报, 2019, 44(3):667-674.
[44] 国家能源局.国家能源局关于发布2023年煤电规划建设风险预警的通知[EB/OL].(2020-02-26)[2023-05-31]. http://www.nea.gov.cn/2020-02/26/c_138820419.htm.
[45] Yu S, Bo J, Vandeginste V, et al. Deformation-related coalification:Significance for deformation within shallow crust[J]. International Journal of Coal Geology, 2022, 256:103999.
[46] Peng Y, Yang Q, Wang L, et al. VOC emissions of coalfired power plants in China based on life cycle assessment method[J]. Fuel, 2021, 292:120325.1-120325.10.
[47] Cui X W, Hong J L, Gao M M, et al. Environmental impact assessment of three coal-based electricity generation scenarios in China[J]. Energy, 2012, 45(1):952-959.
[48] Rasheed R, Javed H, Rizwan A, et al. Life cycle assessment of a cleaner supercritical coal-fired power plant[J]. Journal of Cleaner Production, 2021, 279:123869.1-123869.11.
[49] Li Y, Chiu Y H, Lin T Y. Coal production efficiency and land destruction in China's coal mining industry[J]. Resources Policy, 2019, 63:101449.1-101449.11.
[50] Ding N, Liu J R, Yang J X, et al. Water footprints of energy sources in China:Exploring options to improve water efficiency[J]. Journal of Cleaner Production, 2018, 174:1021-1031.
[51] Wu H J, Wang Q Q, Xu Y H, et al. Coal life-cycle analysis embedded with land-energy nexus of a coal-based city in China[J]. Resources, Environment and Sustainability, 2023, 12:100109.1-100109.10.
Outlines

/