Papers

Application of 3,5-difluoro-2,4,6-trinitroanisole in melt-cast carrier explosive

  • WU Kai ,
  • JING Suming ,
  • HU Fei
Expand
  • 1. Centre for Public Safety on Explosive Substances, Shanxi Police College, Taiyuan 030021, China;
    2. School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

Received date: 2022-06-08

  Revised date: 2023-03-12

  Online published: 2024-06-12

Abstract

3,5-difluoro-2,4,6-trinitroanisole(DFTNAN)is a promising melt-cast carrier explosive that is expected to replace TNT. The compatibility of 3, 5-difluoro-2, 4, 6-trinitroanisole as a new melt-cast explosive carrier with a number of high explosives (RDX, HMX, CL-20 and TKX-50) and functional additives(powdered aluminum and ammonium perchlorate)was studied at the mass ratio of 1:1 by using DSC and VST methods. The detonation properties of DFTNAN/ RDX, DFTNAN/HMX, DFTNAN/CL-20, DFTNAN/Al and DFTNAN/AP mixtures were calculated. Experimental results of compatibility indicated that there were differences in the results of compatibility determination due to the differences in the test principles between DSC method and VST method. Through comprehensive analysis, DFTNAN showed good compatibility with RDX, HMX, CL-20, AP and Al except TKX-50. The results of detonation performance calculation exhibited that the addition of AP can effectively improve the oxygen balance of DFTNA. Among RDX, HMX and AP, the detonation energy of DFTNN/CL-20 mixed system was the biggest, with detonation velocity being 8899 m·s-1, detonation pressure 39.6 GPa, and detonation heat 6442 kJ·kg-1, which are 4.0 %, 32.9 % and 0.6 % bigger than those of pure DFTNAN, respectively.

Cite this article

WU Kai , JING Suming , HU Fei . Application of 3,5-difluoro-2,4,6-trinitroanisole in melt-cast carrier explosive[J]. Science & Technology Review, 2024 , 42(9) : 102 -108 . DOI: 10.3981/j.issn.1000-7857.2022.06.00814

References

[1] Jing S M, Jiang Z M, Jiao Q J, et al. 3, 5-difluoro-2, 4, 6-trinitroanisole: Promising melt-cast insensitive explosives instead of TNT[J]. Journal of Energetic Materials, 2021(33): 1-12.
[2] Mazzeu M A C, da Costa Mattos E, Iha K. Studies on compatibility of energetic materials by thermal methods[J]. Journal of Aerospace Technology and Management, 2010, 2(1): 53-58.
[3] Vogelsanger B. Chemical stability, compatibility and shelf life of explosives[J]. CHIMIA, 2004, 58(6): 401.
[4] de Klerk W, van der Meer N, Eerligh R. Microcalorimetric study applied to the comparison of compatibility tests (VST and IST) of polymers and propellants[J]. Thermochimica Acta, 1995, 269/270: 231-243.
[5] 朱煜, 王建华, 刘玉存, 等. DFTNAN/B 的热分解行为及相容性[J]. 火炸药学报, 2022, 45(1): 85-89.
[6] 王林剑, 胡菲, 荆苏明, 等. DFTNAN、DNAN及其低共熔物的性能对比[J]. 火炸药学报, 2021, 44(5): 658-664.
[7] Hu F, Wang L J, Liu Y C, et al. Molecular dynamics simulation and experimental study of 3, 5-difluoro-2, 4, 6-trinitroanisole/2, 4, 6, 8, 10, 12-hexanitrohexaazaisowurtzitane mixed components[J]. Advanced Composites and Hybrid Materials, 2022, 5(2): 1307-1318.
[8] Strunin V A, Nikolaeva L I. Combustion mechanism of RDX and HMX and possibilities of controlling the combustion characteristics of systems based on them[J]. Combustion, Explosion, and Shock Waves, 2013, 49(1): 53-63.
[9] Muravyev N V, Monogarov K A, Asachenko A F, et al. Pursuing reliable thermal analysis techniques for energetic materials: Decomposition kinetics and thermal stability of dihydroxylammonium 5, 5'-bistetrazole-1, 1'-diolate (TKX-50)[J]. Physical Chemistry Chemical Physics, 2017, 19(1): 436-449.
[10] Meyer R, Köhler J, Homburg A. Explosives[M]. 5th ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2002.
[11] 刘子如, 阴翠梅, 孔扬辉, 等. 高氯酸铵的热分解[J]. 含能材料, 2000, 8(2): 75-79.
[12] Kawamoto A M, Pardini L C, Rezende L C. Synthesis of copper chromite catalyst[J]. Aerospace Science and Technology, 2004, 8(7): 591-598.
[13] 胡荣祖, 孙丽霞, 昊善祥. 中华人民共和国国家军用标准-炸药试验方法: GJB772A—97[S]. 北京: 国防科工委军标出版发行部, 1997.
[14] La Haye E, Klerk W, Miszczak M, et al. Compatibility testing of energetic materials at TNO-PML and MIAT[J]. Journal of Thermal Analysis and Calorimetry, 2003, 72(3): 931-942.
[15] 董海山, 周芬芬. 高能炸药及相关物性能[M]. 北京: 科学出版社, 1989.
[16] 田德余, 赵凤起, 刘剑洪. 含能材料及相关物手册[M]. 北京: 国防工业出版社, 2011: 5, 40.
[17] 徐松林, 阳世清. 偶氮四唑非金属盐类含能材料的合成与性能研究[J]. 含能材料, 2006, 14(5): 377-380.
[18] Sillitto G P. Propellant chemistry[M]. New York: Sarner Stanley F. Reinhold Publishing Corporation, 1966.
Outlines

/