Current status and future prospects of cutting-edge development of amorphous materials
1. Songshan Lake Materials Laboratory, Dongguan 523808, China
2. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Received date: 2024-02-23
Revised date: 2024-04-28
Online published: 2024-06-26
Key words: amorphous matter; glass; amorphous alloy; order regulation
KE Haibo, ZHOU Jing, TONG Xing, WANG Weihua . Current status and future prospects of cutting-edge development of amorphous materials[J]. Science & Technology Review, 0 : 1 . DOI: 10.3981/j.issn.1000-7857.2024.02.00268
[1] Zhao R, Shen L Q, Xiao D D, et al. Diverse glasses revealed from Chang’E-5 lunar regolith[J]. National Science Review, 2023, 10(12): nwad079.
[2] 汪卫华. 非晶物质——常规物质第四态-第二卷[M]. 北京: 科学出版社, 2023.
[3] Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold–silicon alloys[J]. Nature, 1960, 187: 869-870.
[4] Damasceno P F, Engel M, Glotzer S C. Predictive self-assembly of polyhedra into complex structures[J]. Science, 2012, 337(6093): 453-457.
[5] 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33(5): 177-351.
[6] Miracle B D, A structural model for metallic glasses[J]. Nature Materials, 2004, 3: 697-702.
[7] Hirata A, Guan P F, Fujita T, et al. Direct observation of local atomic order in a metallic glass[J]. Nature Materials, 2011, 10(1): 28-33.
[8] Miao J W, Ercius P, Billinge S J L. Atomic electron tomography: 3D structures without crystals[J]. Science, 2016, 353(6306): aaf2157.
[9] Wu Z W, Chen Y X, Wang W H, et al. Topology of vibrational modes predicts plastic events in glasses[J]. Nature Communications, 2023, 14: 2955.
[10] Liu Y H, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy[J]. Physical Review Letters, 2011, 106(12): 125504.
[11] Huang B, Ge T P, Liu G L, et al. Density fluctuations with fractal order in metallic glasses detected by synchrotron X-ray nano-computed tomography[J]. Acta Materialia, 2018, 155: 69-79.
[12] Wagner H, Bedorf D, Küchemann S, et al. Local elastic properties of a metallic glass[J]. Nature Materials, 2011, 10(6): 439-442.
[13] Wu Z W, Li M Z, Wang W H, et al. Hidden topological order and its correlation with glass-forming ability in metallic glasses[J]. Nature Communications, 2015, 6: 6035.
[14] Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses[J]. Progress in Materials Science, 2012, 57(3): 487-656.
[15] Yi J, Huo L S, Zhao D Q, et al. Toward an ideal electrical resistance strain gauge using a bare and single straight strand metallic glassy fiber[J]. Science China Physics, Mechanics and Astronomy, 2012, 55(4): 609-613.
[16] Xian H J, Cao C R, Shi J A, et al. Flexible strain sensors with high performance based on metallic glass thin film[J]. Applied Physics Letters, 2017, 111(12): 121906.
[17] Pei C Q, Zhang B, Xie J Y, et al. Superlattice-shelled nanocrystalline core structural design for highly sensitive GMI sensors[J]. Acta Materialia, 255(1): 119088.
[18] Chang C, Zhang H P, Zhao R, et al. Liquid-like atoms in dense-packed solid glasses[J]. Nature Materials, 2022, 21(11): 1240-1245.
[19] Zhao Y, Shang B S, Zhang B, et al. Ultrastable metallic glass by room temperature aging[J]. Science Advances, 2022, 8(33): eabn3623.
[20] Chen Z Q, Zhao Y, Chi X, et al. Geological timescales' aging effects of lunar glasses[J]. Science Advances, 2023, 9(45): eadi6086.
[21] Zhang B, Zhao D Q, Pan M X, et al. Amorphous metallic plastic[J]. Physical Review Letters, 2005, 94(20): 205502.
[22] Li L Y, Li X, Huang Z Y, et al. Joining of metallic glasses in liquid via ultrasonic vibrations[J]. Nature Communications, 2023, 14(1): 6305.
[23] Li X S, Zhou J, Shen L Q, et al. Exceptionally high saturation magnetic flux density and ultralow coercivity via an amorphous–nanocrystalline transitional microstructure in an FeCo-based alloy[J]. Advanced Materials, 2023, 35(50): 2205863.
[24] Zhou J, Li X S, Hou X B, et al. Ultrahigh permeability at high frequencies via A magnetic-heterogeneous nanocrystallization mechanism in an iron-based amorphous alloy[J]. Advanced Materials, 2023, 35(40): e2304490.
[25] Li M X, Zhao S F, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods[J]. Nature, 2019, 569(7754): 99-103.
[26] Li F C, Li M X, Hu L W, et al. Achieving diamond-like wear in Ta-rich metallic glasses[J]. Advanced Science, 2023, 10(22): e2301053.
[27] Li F C, Zhang Z B, Liu H R, et al. Oxidation-induced superelasticity in metallic glass nanotubes[J]. Nature Materials, 2024, 23(1): 52-57.
[28] Silveyra J M, Ferrara E, Huber D L, et al. Soft magnetic materials for a sustainable and electrified world[J]. Science, 2018, 362(6413): eaao0195.
[29] 宿彦京, 付华栋, 白洋, 等. 中国材料基因工程研究进展[J]. 金属学报, 2020, 56(10): 1313-1323.
[30] Sun Y T, Bai H Y, Li M Z, et al. Machine learning approach for prediction and understanding of glass-forming ability[J]. The Journal of Physical Chemistry Letters, 2017, 8(14): 3434-3439.
[31] Ding S Y, Liu Y H, Li Y L, et al. Combinatorial development of bulk metallic glasses[J]. Nature Materials, 2014, 13: 494-500.
[32] Li M X, Sun Y T, Wang C, et al. Data-driven discovery of a universal indicator for metallic glass forming ability[J]. Nature Materials, 2022, 21: 165-172.
[33] Zhang C, Ouyang D, Pauly S, et al. 3D printing of bulk metallic glasses[J]. Materials Science and Engineering: R: Reports, 2021, 145: 100625./
〈 |
|
〉 |