[1] Sun H L, Huo M W, Hu X W, et al. Signatures of superconductivity near 80 K in a nickelate under high pressure [J]. Nature, 2023, 621(7979): 493-498.
[2] Zhang Y N, Su D J, Huang Y N, et al. High-temperature superconductivity with zero-resistance and strange metal behavior in La3Ni2O7-δ[J]. Nature Physics, 2024, 20: 1269-1273.
[3] Hou J, Yang P T, Liu Z Y, et al. Emergence of high-temperature superconducting phase in pressurized La3Ni2O7 crystals[J]. Chinese Physics Letters, 2023, 40(11): 117302.
[4] Wang G, Wang N N, Shen X L, et al. Pressure-induced superconductivity in polycrystalline La3Ni2O7-δ[J]. Physical Review X, 2024, 14: 011040.
[5] Luo Z H, Hu X W, Wang M, et al. Bilayer two-orbital model of La3Ni2O7 under pressure[J]. Physical Review Letters, 2023, 131(12): 126001.
[6] 高淼, 卢仲毅, 向涛. 通过金属化σ电子寻找高温超导体[J]. 物理, 2015, 44(7): 421-426.
[7] Yang J, Sun H, Hu X, et al. Orbital-dependent electron correlation in double-layer nickelate La3Ni2O7[J]. Nature Communications, 2024, 15: 4373.
[8] Shen Y, Qin M P, Zhang G M. Effective Bi-layer model Hamiltonian and density-matrix renormalization group study for the high-Tc superconductivity in La3Ni2O7 under high pressure[J]. Chinese Physics Letters, 2023, 40(12): 127401.
[9] Lu C, Pan Z M, Yang F, et al. Interlayer-coupling-driven high-temperature superconductivity in La3Ni2O7 under pressure[J]. Physical Review Letters, 2024, 132(14): 146002.
[10] Qu X Z, Qu D W, Chen J L, et al. Bilayer t-J-j⊥ model and magnetically mediated pairing in the pressurized nickelate La3Ni2O7[J]. Physical Review Letters, 2024, 132(3): 036502.
[11] Cao Y Y, Yang Y F. Flat bands promoted by Hund's rule coupling in the candidate double-layer high-temperature superconductor La3Ni2O7 under high pressure [J]. Physical Review B, 2024, 109(8): L081105.
[12] Ouyang Z F, Wang J M, Wang J X, et al. Hund electronic correlation in La3Ni2O7 under high pressure[J]. Physical Review B, 2024, 109(11): 115114.
[13] Yang H, Oh H, Zhang Y H. Strong pairing from small Fermi surface beyond weak coupling: Application to La3Ni2O7[EB/OL]. (2023-11-28). http://arxiv.org/abs/2309.15095.
[14] Zhang Y, Lin L F, Moreo A, et al. Electronic structure, magnetic correlations, and superconducting pairing in the reduced Ruddlesden-Popper bilayer La3Ni2O6 under pressure: Different role of d3z2-r2 orbital compared with La3Ni2O7[J]. Physical Review B, 2024, 109(4): 045151.
[15] Lechermann F, Gondolf J, Bötzel S, et al. Electronic correlations and superconducting instability in La3Ni2O7 under high pressure[J]. Physical Review B, 2023, 108(20): L201121.
[16] Gu Y H, Le C C, Yang Z S, et al. Effective model and pairing tendency in bilayer Ni-based superconductor La3Ni2O7[EB/OL]. (2023-08-31). http://arxiv.org/abs/2306.07275.
[17] Christiansson V, Petocchi F, Werner P. Correlated electronic structure of La3Ni2O7 under pressure[J]. Physical Review Letters, 2023, 131(20): 206501.
[18] Shilenko D A, Leonov I V. Correlated electronic structure, orbital-selective behavior, and magnetic correlations in double-layer La3Ni2O7 under pressure[J]. Physical Review B, 2023, 108(12): 125105.
[19] Liu Y Q, Liu Y B, Wang W S, et al. Electronic orders on the kagome lattice at the lower Van Hove filling[J]. Physical Review B, 2024, 109(7): 075127.
[20] Luo Z H, Lv B, Wang M, et al. High-Tc superconductivity inLa3Ni2O7 based on the bilayer two-orbital t-J model [J]. NPJ Quantum Materials, 2024, 9: 61.
[21] Liu Y B, Mei J W, Ye F, et al. S±-wave pairing and the destructive role of apical-oxygen deficiencies in La3Ni2O7 under pressure[J]. Physical Review Letters, 2023, 131(23): 236002.
[22] Qin Q, Yang Y F. High-Tc superconductivity by mobilizing local spin singlets and possible route to higher Tc in pressurized La3Ni2O7[J]. Physical Review B, 2023, 108(14): L140504.
[23] Sakakibara H, Kitamine N, Ochi M, et al. Possible high t c superconductivity in La3Ni2O7 under high pressure through manifestation of a nearly half-filled bilayer Hubbard model[J]. Physical Review Letters, 2024, 132(10): 106002.
[24] Tian Y H, Chen Y, Wang J M, et al. Correlation effects and concomitant two-orbital s±-wave superconductivity in La3Ni2O7 under high pressure[J]. Physical Review B, 2024, 109(16): 165154.
[25] Lu D C, Li M, Zeng Z Y, et al. Superconductivity from doping symmetric mass generation insulators: Application to La3Ni2O7 under pressure[EB/OL]. (2023-09-14). http://arxiv.org/abs/2308.11195.
[26] Huang J K, Wang Z D, Zhou T. Impurity and vortex states in the bilayer high-temperature superconductor La3Ni2O7[J]. Physical Review B, 2023, 108(17): 174501.
[27] Wú W, Luo Z H, Yao D X, et al. Charge transfer and Zhang-rice singlet bands in the nickelate superconductor La3Ni2O7 under pressure[J]. Science China Physics Mechanics and Astronomy, 2024, 67(11): 117402.
[28] Jiang K, Wang Z Q, Zhang F C. High-temperature superconductivity in La3Ni2O7[J]. Chinese Physics Letters, 2024, 41(1): 017402.
[29] Liu H Q, Xia C L, Zhou S J, et al. Role of crystal-fieldsplitting and longe-range-hoppings on superconducting pairing symmetry of La3Ni2O7[EB/OL]. (2023-11-13). http://arxiv.org/abs/2311.07316
[30] Fan Z, Zhang J F, Zhan B, et al. Superconductivity in nickelate and cuprate superconductors with strong bilayer coupling[J]. Physical Review B, 2024, 110(2): 024514.
[31] Wang Y X, Jiang K, Wang Z Q, et al. Electronic structure and superconductivity in bilayer La3Ni2O7[EB/OL]. (2024-01-24). http://arxiv.org/abs/2401.15097.
[32] Yang Y F, Zhang G M, Zhang F C. Interlayer valence bonds and two-component theory for high-Tc superconductivity of La3Ni2O7 under pressure[J]. Physical Review B, 2023, 108(20): L201108.
[33] Zhang F C, Rice T M. Effective Hamiltonian for the superconducting Cu oxides[J]. Physical Review B, 1988, 37(7): 3759-3761.
[34] Li J Y, Ma P Y, Zhang H Y, et al. Pressure-driven right-triangle shape superconductivity in bilayer nickelate La3Ni2O7[EB/OL]. (2024-04-24). http://arxiv.org/abs/2404.11369.
[35] Liu Z, Huo M W, Li J, et al. Electronic correlations and partial gap in the bilayer nickelate La3Ni2O7[J]. Nature Communications, 2024, 15(1): 7570.
[36] Chen K W, Liu X Q, Jiao J C, et al. Evidence of spin density waves in La3Ni2O7-δ[EB/OL]. (2024-05-13). http: //arxiv.org/abs/2311.15717.
[37] Liu Z J, Sun H L, Huo M W, et al. Evidence for charge and spin density waves in single crystals of La3Ni2O7 and La3Ni2O6[J]. Science China Physics, Mechanics & Astronomy, 2022, 66(1): 217411.
[38] Chen X Y, Choi J, Jiang Z C, et al. Electronic and magnetic excitations in La3Ni2O7[EB/OL]. (2024-01-23). http://arxiv.org/abs/2401.12657.
[39] Freeman P G, Boothroyd A T, Prabhakaran D, et al. Spin dynamics of half-doped La3/2Sr1/2NiO4[J]. Physical Review B, 2005, 71(17):174412.
[40] Yao D X, Carlson E. Spin-wave dispersion in halfdoped La3/2Sr1/2NiO4[J]. Physical Review B, 2006, 75(1): 012414.
[41] Zhang Y, Lin L F, Moreo A, et al. Trends in electronic structures and s±-wave pairing for the rare-earth series in bilayer nickelate superconductor R3Ni2O7[J]. Physical Review B, 2023, 108(16): 165141.
[42] Geisler B, Hamlin J J, Stewart G R, et al. Structural transitions, octahedral rotations, and electronic properties of A3Ni2O7 rare-earth nickelates under high pressure [J]. npj Quantum Materials, 2024, 9(1): 38.
[43] Wu S Q, Yang Z H, Ma X, et al. Ac3Ni2O7 and La2AeNi 2O6F(Ae = Sr, Ba): Benchmark materials for bilayer nickelate superconductivity[EB/OL]. (2024-03-18). http://arxiv.org/abs/2403.11713.
[44] Li Q, Zhang Y J, Xiang Z N, et al. Signature of superconductivity in pressurized La4Ni3O10[J]. Chinese Physics Letters, 2024, 41(1): 017401.
[45] Zhu Y H, Zhang E K, Pan B Y, et al. Superconductivity in trilayer nickelate La4Ni3O10 single crystals[J]. Nature, 2024, 631(8021): 531-536.
[46] Zhang M X, Pei C Y, Du X, et al. Superconductivity in trilayer nickelate La4Ni3O10 under pressure[EB/OL]. (2024-03-12). https://arxiv.org/abs/2311.07423.
[47] Sakakibara H, Ochi M, Nagata H, et al. Theoretical analysis on the possibility of superconductivity in the trilayer Ruddlesden-Popper nickelate La4Ni3O10 under pressure and its experimental examination: Comparison with La3Ni2O7[J]. Physical Review B, 2024, 109(14): 144511.
[48] Li J Y, Chen C Q, Huang C X, et al. Structural transition, electric transport, and electronic structures in the compressed trilayer nickelate La4Ni3O10[J]. Science China Physics, Mechanics & Astronomy, 2024, 67(11): 117403.
[49] Chen C Q, Luo Z H, Wang M, et al. Trilayer multi-orbital models of La4Ni3O10[J]. Physical Review B, 2024, 110: 014503.
[50] Wang J X, Ouyang Z F, He R Q, et al. Non-Fermi liquid and Hund correlation in La4Ni3O10 under high pressure[J]. Physical Review B, 2024, 109(16): 165140.
[51] Leonov I V. Electronic structure and magnetic correlations in the trilayer nickelate superconductor La4Ni3O10 under pressure[J]. Physical Review B, 2024, 109(23): 235123.
[52] LaBollita H, Kapeghian J, Norman M R, et al. Electronic structure and magnetic tendencies of trilayer La4Ni3O10 under pressure: Structural transition, molecular orbitals, and layer differentiation[J]. Physical Review B, 2024, 109(19): 195151.
[53] Yang Q G, Jiang K Y, Wang D, et al. Effective model and s ±-wave superconductivity in trilayer nickelate La4Ni3O10[J]. Physical Review B, 2024, 109(22): L220506.
[54] Zhang Y, Lin L F, Moreo A, et al. Prediction of s±-wave superconductivity enhanced by electronic doping in trilayer nickelates La4Ni3O10 under pressure[J]. Physical Review Letters, 2024, 133(13): 136001.
[55] Tian P F, Ma H T, Ming X, et al. Effective model and electron correlations in trilayer nickelate superconductor La4Ni3O10[J]. Journal of Physics: Condensed Matter, 2024, 36(35): 355602.
[56] Zhang M, Sun H Y, Liu Y B, et al. The s±-wave superconductivity in the pressurized La4Ni3O10[EB/OL]. (2024-03-07). http://arxiv.org/abs/2402.07902.
[57] Lu C, Pan Z M, Yang F, et al. Superconductivity in La4Ni3O10 under pressure[EB/OL]. (2024-02-14). http://arxiv.org/abs/2402.06450.