Reviews

Research progress of extracorporeal shock wave in osteoarthritis the treatment and its mechanism

  • LIANG Jiaming ,
  • CHEN Xin ,
  • MA Zhiyan ,
  • ZHANG Yingyu ,
  • ZHAO Linlin ,
  • LIU Yingying ,
  • LIU Yajun
Expand
  • 1. School of Public Health, Shandong First Medical University, Ji'nan 250117, China;
    2. Medical Science and Technology Innovation Center, Shandong First Medical University, Ji'nan 250117, China;
    3. Biomedical Sciences College, Shandong First Medical University, Ji'nan 250117, China;
    4. National Orthopaedic Medical Center, Beijing Jishuitan Hospital, Beijing Institute of Orthopaedic Trauma, Beijing 100035, China

Received date: 2023-03-16

  Revised date: 2023-04-11

  Online published: 2024-07-08

Abstract

Osteoarthritis is a degenerative disease caused by mechanical injury, inflammation and metabolic disorders. Extracorporeal shock wave therapy is a clinical physical therapy that can effectively relieve joint pain and delay the process of joint inflammation. In this study, we collect and sort out the related studies of extracorporeal shock wave in the treatment of osteoarthritis from clinical trials and animal models, and then summarize the potential mechanism of extracorporeal shock wave in the treatment of damaged cartilage and remodeling subchondral bone. This study provides a basis for further improving the effect of extracorporeal shock wave in the treatment of osteoarthritis.

Cite this article

LIANG Jiaming , CHEN Xin , MA Zhiyan , ZHANG Yingyu , ZHAO Linlin , LIU Yingying , LIU Yajun . Research progress of extracorporeal shock wave in osteoarthritis the treatment and its mechanism[J]. Science & Technology Review, 2024 , 42(11) : 58 -65 . DOI: 10.3981/j.issn.1000-7857.2023.03.00410

References

[1] Martel-Pelletier J, Barr A J, Cicuttini F M, et al. Osteoar-thritis[J]. Nature Reviews Disease Primers, 2016, doi:10.1038/nrdp.2016.72.
[2] Buckwalter J A, Martin J A. Osteoarthritis[J]. Advanced Drug Delivery Reviews, 2006, 58(2):150-167.
[3] Rim Y A, Ju J H. The role of fibrosis in osteoarthritis pro-gression[J]. Life, 2020, 11(1):3.
[4] Cheng J H, Hsu C C, Hsu S L, et al. Adipose-derived mesenchymal stem cells-conditioned medium modulates the expression of inflammation induced bone morphoge-netic protein-2,-5 and-6 as well as compared with shockwave therapy on rat knee osteoarthritis[J]. Biomedi-cines, 2021, 9(10):1399.
[5] Ruano-Ravina A, Jato Díaz M. Autologous chondrocyte implantation:A systematic review[J]. Osteoarthritis and Cartilage, 2006, 14(1):47-51.
[6] Chan F K, Lanas A, Scheiman J, et al. Celecoxib versus omeprazole and diclofenac in patients with osteoarthritis and rheumatoid arthritis (CONDOR):A randomised trial[J]. The Lancet, 2010, 376(9736):173-179.
[7] Lohmander L S, Mckeith D, Svensson O, et al. A ran-domised, placebo controlled, comparative trial of the gas-trointestinal safety and efficacy of AZD3582 versus naproxen in osteoarthritis[J]. Annals of the Rheumatic Diseases, 2005, 64(3):449-456.
[8] Zhang W, Nuki G, Moskowitz R W, et al. OARSI recom-mendations for the management of hip and knee osteoar-thritis:Part III:Changes in evidence following systematic cumulative update of research published through January 2009[J]. Osteoarthritis and Cartilage, 2010, 18(4):476-499.
[9] Wallace J L. Prostaglandins, NSAIDs, and gastric muco-sal protection:Why doesn't the stomach digest itself?[J]. Physiological Reviews, 2008, 88(4):1547-1565.
[10] Quinn R H, Murray J N, Pezold R, et al. Surgical man-agement of osteoarthritis of the knee[J]. The Journal of the American Academy of Orthopaedic Surgeons, 2018, 26(9):e191-e193.
[11] Cooper C, Chapurlat R, Al-Daghri N, et al. Safety of oral non-selective non-steroidal anti-inflammatory drugs in osteoarthritis:What does the literature say?[J]. Drugs&Aging, 2019, 36(1):15-24.
[12] Hunter D J, Bierma-Zeinstra S. Osteoarthritis[J]. The Lancet, 2019, 393(10182):1745-1759.
[13] Bijlsma J W, Berenbaum F, Lafeber F P. Osteoarthritis:An update with relevance for clinical practice[J]. The Lancet, 2011, 377(9783):2115-2126.
[14] Wang C J. Extracorporeal shockwave therapy in musculo-skeletal disorders[J]. Journal of Orthopaedic Surgery and Research, 2012, 7:11.
[15] Zheng C X, Zeng D J, Chen J Y, et al. Effectiveness of extracorporeal shock wave therapy in patients with ten-nis elbow:A meta-analysis of randomized controlled tri-als[J]. Medicine, 2020, 99(30):e21189.
[16] Mckee M D. Extracorporeal shock-wave therapy com-pared with surgery for hypertrophic long-bone nonunions[J]. The Journal of Bone and Joint Surgery American Volume, 2010, 92(5):1316.
[17] Harniman E, Carette S, Kennedy C, et al. Extracorporeal shock wave therapy for calcific and noncalcific tendon-itis of the rotator cuff:A systematic review[J]. Journal of Hand Therapy, 2004, 17(2):132-151.
[18] Gu J Y, Li K M, Zhang Q, et al. Clinical efficacy of ex-tracorporeal shock wave in the treatment of knee osteoar-thritis:A meta-analysis[J]. Rehabilitation Medicine, 2022, 32(4):359-366.
[19] Jeon J H, Jung Y J, Lee J Y, et al. The effect of extra-corporeal shock wave therapy on myofascial pain syn-drome[J]. Annals of Rehabilitation Medicine, 2012, 36(5):665-674.
[20] KANG S H, GAO F Q, HAN J, et al. Extracorporeal shock wave treatment can normalize painful bone mar-row edema in knee osteoarthritis:A comparative histori-cal cohort study[J]. Medicine, 2018, 97(5):e9796.
[21] Imamura M, Alamino S, Hsing W T, et al. Radial extra-corporeal shock wave therapy for disabling pain due to severe primary knee osteoarthritis[J]. Journal of Rehabili-tation Medicine, 2017, 49(1):54-62.
[22] Kim J H, Kim J Y, Choi C M, et al. The dose-related ef-fects of extracorporeal shock wave therapy for knee os-teoarthritis[J]. Annals of Rehabilitation Medicine, 2015, 39(4):616-623.
[23] Wang C J, Yang K D, Ko J Y, et al. The effects of shockwave on bone healing and systemic concentrations of nitric oxide (NO), TGF-β1, VEGF and BMP-2 in long bone non-unions[J]. Nitric Oxide, 2009, 20(4):298-303.
[24] Liu S C, Qiao X F, Tang Q X, et al. Therapeutic effica-cy of extracorporeal shock wave combined with hyaluron-ic acid on knee osteoarthritis[J]. Medicine, 2019, 98(8):e14589.
[25] Vetrano M, Ranieri D, Nanni M, et al. Hyaluronic Acid (HA), Platelet-Rich Plasm and Extracorporeal Shock Wave Therapy (ESWT) promote human chondrocyte re-generation in vitro and ESWT-mediated increase of CD44 expression enhances their susceptibility to HA treatment[J]. PLoS One, 2019, 14(6):e0218740.
[26] Moretti B, Iannone F, Notarnicola A, et al. Extracorpore-al shock waves down-regulate the expression of interleu-kin-10 and tumor necrosis factor-alpha in osteoarthritic chondrocytes[J]. BMC Musculoskeletal Disorders, 2008, 9(1):16.
[27] Mayer-Wagner S, Ernst J, Maier M, et al. The effect of high-energy extracorporeal shock waves on hyaline carti-lage of adult rats in vivo[J]. Journal of Orthopaedic Re-search, 2010, 28(8):1050-1056.
[28] Ramesh S, Zaman F, Sävendahl L, et al. Radial shock-wave treatment promotes chondrogenesis in human growth plate and longitudinal bone growth in rabbits[J]. Bone, 2022, 154:116186.
[29] 苏文珍,林永杰,王国伟,等.体外冲击波联合富血小板血浆注射治疗膝关节骨关节炎的前瞻性临床对比研究[J].中国修复重建外科杂志, 2019, 33(12):1527-1531.
[30] Zhong Z Y, Liu B Z, Liu G H, et al. A randomized con-trolled trial on the effects of low-dose extracorporeal shockwave therapy in patients with knee osteoarthritis[J]. Archives of Physical Medicine and Rehabilitation, 2019, 100(9):1695-1702.
[31] Madry H, Kon E, Condello V, et al. Early osteoarthritis of the knee[J]. Knee Surgery, Sports Traumatology, Ar-throscopy, 2016, 24(6):1753-1762.
[32] Chou W Y, Cheng J H, Wang C J, et al. Shockwave tar-geting on subchondral bone is more suitable than articu-lar cartilage for knee osteoarthritis[J]. International Jour-nal of Medical Sciences, 2019, 16(1):156-166.
[33] Wang C J, Cheng J H, Chou W Y, et al. Changes of ar-ticular cartilage and subchondral bone after extracorpore-al shockwave therapy in osteoarthritis of the knee[J]. In-ternational Journal of Medical Sciences, 2017, 14(3):213-223.
[34] Wang C J, Cheng J H, Huang C Y, et al. Medial tibial subchondral bone is the key target for extracorporeal shockwave therapy in early osteoarthritis of the knee[J]. American Journal of Translational Research, 2017, 9(4):1720-1731.
[35] 陈易杨,王越业.关节炎发病机制及治疗的研究进展[J].中国处方药, 2023, 21(1):174-181.
[36] Wang C J, Weng L H, Ko J Y, et al. Extracorporeal shockwave therapy shows chondroprotective effects in os-teoarthritic rat knee[J]. Archives of Orthopaedic and Trauma Surgery, 2011, 131(8):1153-1158.
[37] Wang C J, Hsu S L, Weng L H, et al. Extracorporeal shockwave therapy shows a number of treatment related chondroprotective effect in osteoarthritis of the knee in rats[J]. BMC Musculoskeletal Disorders, 2013, 14:44.
[38] Wang C J, Sun Y C, Wong T, et al. Extracorporeal shockwave therapy shows time-dependent chondropro-tective effects in osteoarthritis of the knee in rats[J]. Journal of Surgical Research, 2012, 178(1):196-205.
[39] Hsu S L, Cheng J H, Wang C J, et al. Extracorporeal shockwave therapy enhances expression of pdia-3 which is a key factor of the 1α, 25-dihydroxyvitamin D 3 rap-id membrane signaling pathway in treatment of early os-teoarthritis of the knee[J]. International Journal of Medi-cal Sciences, 2017, 14(12):1220-1230.
[40] Wang C J, Sun Y C, Wu C T, et al. Molecular changes after shockwave therapy in osteoarthritic knee in rats[J]. Shock Waves, 2016, 26(1):45-51.
[41] Wang F S, Yang K D, Kuo Y R, et al. Temporal and spatial expression of bone morphogenetic proteins in ex-tracorporeal shock wave-promoted healing of segmental defect[J]. Bone, 2003, 32(4):387-396.
[42] Zhao Z, Ji H R, Jing R F, et al. Extracorporeal shockwave therapy reduces progression of knee osteoarthritis in rabbits by reducing nitric oxide level and chondro-cyte apoptosis[J]. Archives of Orthopaedic and Trauma Surgery, 2012, 132(11):1547-1553.
[43] Ramesh S, Zaman F, Madhuri V, et al. Radial extracor-poreal shock wave treatment promotes bone growth and chondrogenesis in cultured fetal rat metatarsal bones[J]. Clinical Orthopaedics and Related Research, 2020, 478(3):668-678.
[44] Scanzello C R, Goldring S R. The role of synovitis in os-teoarthritis pathogenesis[J]. Bone, 2012, 51(2):249-257.
[45] Stupina T A, Stepanov M A, Teplen' Kii M P. Role of subchondral bone in the restoration of articular cartilage[J]. Bulletin of Experimental Biology and Medicine, 2015, 158(6):820-823.
[46] Imhof H, Breitenseher M, Kainberger F, et al. Impor-tance of subchondral bone to articular cartilage in health and disease[J]. Topics in Magnetic Resonance Im-aging, 1999, 10(3):180-192.
[47] Zhao W, Wang T, Luo Q, et al. Cartilage degeneration and excessive subchondral bone formation in spontane-ous osteoarthritis involves altered TGF-β signaling[J]. Journal of Orthopaedic Research, 2016, 34(5):763-770.
[48] Yu L, Liu S T, Zhao Z, et al. Extracorporeal shock wave rebuilt subchondral bone in vivo and activated Wnt5a/Ca2+signaling in vitro[J]. BioMed Research Internation-al, 2017, 2017:1404650.
[49] Wang C J, Weng L H, Ko J Y, et al. Extracorporeal shockwave shows regression of osteoarthritis of the knee in rats[J]. Journal of Surgical Research, 2011, 171(2):601-608.
[50] Byron C R, Benson B M, Stewart A A, et al. Effects of radial shock waves on membrane permeability and via-bility of chondrocytes and structure of articular cartilage in equine cartilage explants[J]. American Journal of Vet-erinary Research, 2005, 66(10):1757-1763.
[51] Gambihler S, Delhis M, Ellwart J W. Permeabilization of the plasma membrane of L1210 mouse leukemia cells using lithotripter shock waves[J]. The Journal of Mem-brane Biology, 1994, 141(3):267-275.
[52] 周涛斌,饶泉,谢邦椰,等.不同能量体外冲击波治疗髌骨软骨软化症的临床疗效和安全性[J].中国康复, 2021, 36(4):222-225.
[53] Chen T W, Lin C W, Lee C L, et al. The efficacy of shock wave therapy in patients with knee osteoarthritis and popliteal cyamella[J]. The Kaohsiung Journal of Medical Sciences, 2014, 30(7):362-370.
[54] Cho S J, Yang J R, Yang H S, et al. Effects of extracor-poreal shockwave therapy in chronic stroke patients with knee osteoarthritis:A pilot study[J]. Annals of Rehabili-tation Medicine, 2016, 40(5):862-870.
[55] Shen P C, Chou S H, Lu C C, et al. Shockwave treat-ment enhanced extracellular matrix production in articu-lar chondrocytes through activation of the ROS/MAPK/Nrf2 signaling pathway[J]. Cartilage, 2021, 13(Suppl 2):238S-253S.
Outlines

/