[1] Seo B B, Kwon Y, Kim J, et al. Injectable polymeric nanoparticle hydrogel system for long-term anti-inflamma-tory effect to treat osteoarthritis[J]. Bioactive Materials, 2022, 7:14-25.
[2] Li J, Han F, Ma J, et al. Targeting endogenous hydrogen peroxide at bone defects promotes bone repair[J]. Ad-vanced Functional Materials, 2021, 33:2005513.
[3] Chin K Y. The relationship between vitamin K and osteo-arthritis:A review of current evidence[J]. Nutrients, 2020, 12(5):1208.
[4] Chen D, Shen J, Zhao W W, et al. Osteoarthritis:Toward a comprehensive understanding of pathological mechanism[J]. Bone Research, 2017, 5(1):1-13.
[5] Murray C J L, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 re-gions, 1990-2010:A systematic analysis for the Global Burden of Disease Study 2010[J]. The Lancet, 2012, 380(9859):2197-2223.
[6] Ansari M Y, Ahmad N, Haqqi T M. Oxidative stress and inflammation in osteoarthritis pathogenesis:Role of poly-phenols[J]. Biomedicine&Pharmacotherapy, 2020, 129:110452.
[7] Xie R J, Yao H, Mao A S, et al. Biomimetic cartilage-lu-bricating polymers regenerate cartilage in rats with early osteoarthritis[J]. Nature Biomedical Engineering, 2021, 5(10):1189-1201.
[8] Hunter D J, Bierma-Zeinstra S. Osteoarthritis[J]. The Lan-cet, 2019, 393(10182):1745-1759.
[9] Lepetsos P, Papavassiliou A G. ROS/oxidative stress sig-naling in osteoarthritis[J]. Biochimica et Biophysica Acta, 2016, 1862(4):576-591.
[10] Ackerman M J, Tester D J, Porter C B J. Swimming, a gene-specific arrhythmogenic trigger for inherited long QT syndrome[J]. Mayo Clinic Proceedings, 1999, 74(11):1088-1094.
[11] Wen Z H, Lin Y Y, Chang Y C, et al. The COX-2 inhib-itor etoricoxib reduces experimental osteoarthritis and nociception in rats:The roles of TGF-β1 and NGF ex-pressions in chondrocytes[J]. European Journal of Pain, 2020, 24(1):209-222.
[12] Mastbergen S C, Marijnissen A C, Vianen M E, et al. In-hibition of COX-2 by celecoxib in the canine groove model of osteoarthritis[J]. Rheumatology, 2006, 45(4):405-413.
[13] Clemett D, Goa K L. Celecoxib:A review of its use in osteoarthritis, rheumatoid arthritis and acute pain[J]. Drugs, 2000, 59(4):957-980.
[14] Hajjaji H E, Annette M, Jean-Pierre D, et al. Celecoxib has a positive effect on the overall metabolism of hyal-uronan andproteoglycans in human osteoarthritic carti-lage[J]. The Journal of Rheumatology, 2003, 30:2444-2451.
[15] Bazan L, Bendas E R, El Gazayerly O N, et al. Compara-tive pharmaceutical study on colon targeted micro-parti-cles of celecoxib:In-vitro-in-vivo evaluation[J]. Drug Delivery, 2016, 23(9):3339-3349.
[16] 刘美滟,毕波,彭家兰,等.塞来昔布治疗骨关节炎的研究进展[J].中国动物保健, 2021, 23(7):108-110.
[17] Tieppo V, Davani S, Towery C, et al. Oral versus topical diclofenac sodium in the treatment of osteoarthritis[J]. Journal of Pain&Palliative Care Pharmacotherapy, 2017, 31(2):113-120.
[18] Van Walsem A, Pandhi S, Nixon R M, et al. Relative benefit-risk comparing diclofenac to other traditional non-steroidal anti-inflammatory drugs and cyclooxygen-ase-2 inhibitors in patients with osteoarthritis or rheu-matoid arthritis:A network meta-analysis[J]. Arthritis Research&Therapy, 2015, 17(1):66.
[19] Gottesdiener K, Schnitzer T, Fisher C, et al. Results of a randomized, dose-ranging trial of etoricoxib in patients with osteoarthritis[J]. Rheumatology (Oxford, England), 2002, 41(9):1052-1061.
[20] He W, Wu Y, Liu Q, et al. Effect of Etoricoxib on miR-214 and inflammatory reaction in knee osteoarthritis pa-tients[J]. American Journal of Translational Research, 2021, 13(8):9586-9592.
[21] Sankaranarayanan R, Kumar D R, Altinoz M A, et al. Mechanisms of colorectal cancer prevention by aspirina literature review and perspective on the role of COXdependent and-independent pathways[J]. International Journal of Molecular Sciences, 2020, 21(23):9018.
[22] Ratchford S M, Lavin K, Perkins R, et al. Aspirin as a COX inhibitor and anti-inflammatory drug in human skeletal muscle[J]. Journal of Applied Physiology:Respi-ratory, Environmental and Exercise Physiology, 2017, 123(6):jap.01119.2016.
[23] Tung Y T, Wei C H, Yen C C, et al. Aspirin attenuates hyperoxia-induced acute respiratory distress syndrome (ARDS) by suppressing pulmonary inflammation via the NF-κB signaling pathway[J]. Frontiers in Pharmacology, 2021, 12:793107.
[24] Yin X L, Zhang Y T, Wen Y L, et al. Celecoxib allevi-ates zinc deficiency-promoted colon tumorigenesis through suppressing inflammation[J]. Aging, 2021, 13(6):8320-8334.
[25] Jenei-Lanzl Z, Meurer A, Zaucke F. Interleukin-1β sig-naling in osteoarthritis-chondrocytes in focus[J]. Cellu-lar Signalling, 2019, 53:212-223.
[26] Yu S P, Hunter D J. Intra-articular therapies for osteoar-thritis[J]. Expert Opinion on Pharmacotherapy, 2016, 17(15):2057-2071.
[27] Chen X, Zhu X, Dong J, et al. Reversal of epigenetic peroxisome proliferator-activated receptor-gamma sup-pression by diacerein alleviates oxidative stress and os-teoarthritis in mice[J]. Antioxid Redox Signal, 2022, 37(1-3):40-53.
[28] Permuy M, Guede D, López-Peña M, et al. Effects of di-acerein on cartilage and subchondral bone in early stag-es of osteoarthritis in a rabbit model[J]. BMC Veterinary Research, 2015, 11:143.
[29] Almezgagi M, Zhang Y, Hezam K, et al. Diacerein:Re-cent insight into pharmacological activities and molecu-lar pathways[J]. Biomedicine&Pharmacotherapy, 2020, 131:110594.
[30] Yaron M, Shirazi I, Yaron I, et al. eAnti-interleukin-1 effects of diacerein and Rhein in human osteoarthritic synovial tissue and cartilage cultures[J]. Osteoarthritis and Cartilage, 1999, 7(3):272-280.
[31] Mcfarland A J, Davey A K, Mcdermott C M, et al. Differ-ences in statin associated neuroprotection corresponds with either decreased production of IL-1β or TNF-α in an in vitro model of neuroinflammation-induced neuro-degeneration[J]. Toxicology and Applied Pharmacology, 2018, 344:56-73.
[32] 毛泽楷.普伐他汀通过恢复受损伤自噬以减轻白细胞介素1β诱导的软骨降解及作用机制研究[D].武汉:华中科技大学, 2020.
[33] Imamura M, Okunishi K, Ohtsu H, et al. Pravastatin at-tenuates allergic airway inflammation by suppressing an-tigen sensitisation, interleukin 17 production and anti-gen presentation in the lung[J]. Thorax, 2009, 64(1):44-49.
[34] Mao Z K, Wang P C, Pan Q Y, et al. Pravastatin allevi-ates interleukin 1β-induced cartilage degradation by re-storing impaired autophagy associated with MAPK path-way inhibition[J]. International Immunopharmacology, 2018, 64:308-318.
[35] Sun Q, Zhang Y Z, Ding Y L, et al. Inhibition of PGE2 in subchondral bone attenuates osteoarthritis[J]. Cells, 2022, 11(17):2760.
[36] Horecka A, Hordyjewska A, Blicharski T, et al. Osteoar-thritis of the knee-biochemical aspect of applied thera-pies:A review[J]. Bosnian Journal of Basic Medical Sci-ences, 2022, 22(4):488-498.
[37] Hsueh M F, Bolognesi M P, Wellman S S, et al. Anti-in-flammatory effects of naproxen sodium on human osteo-arthritis synovial fluid immune cells[J]. Osteoarthritis and Cartilage, 2020, 28(5):639-645.
[38] Martínez C S, Salgado L C, Martínez Z F. Effect of naproxen on serum concentrations of IL-I, IL-6, and TNF in patients with osteoarthritis[J]. Revista Alergia México, 2001, 48(4):119-122.
[39] Paglia D N, Kanjilal D, Kadkoy Y, et al. Naproxen treat-ment inhibits articular cartilage loss in a rat model of os-teoarthritis[J]. Journal of Orthopaedic Research, 2021, 39(10):2252-2259.
[40] Wang C J, Wang F, Lin F, et al. Naproxen attenuates os-teoarthritis progression through inhibiting the expression of prostaglandinl-endoperoxide synthase 1[J]. Journal of Cellular Physiology, 2019, 234(8):12771-12785.
[41] Khotib J, Utami N W, Gani M A, et al. The change of proinflammatory cytokine tumor necrosis factor α level in the use of meloxicam in rat model of osteoarthritis[J]. Journal of Basic and Clinical Physiology and Pharmacol-ogy, 2019, 30(6), doi:10.1515/jbcpp-2019-0331.
[42] Nagy E, Vajda E, Vari C, et al. Meloxicam ameliorates the cartilage and subchondral bone deterioration in monoiodoacetate-induced rat osteoarthritis[J]. PeerJ, 2017, 5:e3185.
[43] Brogden R N, Finder R M, Sawyer P R, et al. Naproxen:A review of its pharmacological properties and therapeu-tic efficacy and use[J]. Drugs, 1975, 9(5):326-363.
[44] 韩丽华.盐酸氨基葡萄糖胶囊治疗骨关节炎的现状及进展研究[J].中国现代药物应用, 2020, 14(8):232-233.
[45] 徐德钢,李金龙,王亮.硫酸氨基葡萄糖联合美洛昔康治疗骨关节炎的临床疗效[J].临床合理用药杂志, 2022, 15(3):136-138.
[46] 杨宝华.氨基葡萄糖联合硫酸软骨素治疗膝骨关节炎的效果[J].临床医学研究与实践, 2018, 3(35):83-84.
[47] ARTUZI F E, PURICELLI E, BARALDI C E, et al. Re-duction of osteoarthritis severity in the temporomandibu-lar joint of rabbits treated with chondroitin sulfate and glucosamine[J]. PLoS One, 2020, 15(4):e0231734.
[48] 周跃钢.硫酸软骨素的研究进展及其应用前景[J].中国药学杂志, 2016, 51(21):1821-1825.
[49] 魏庆宏.硫酸软骨素抑制实验性骨关节炎软骨细胞凋亡的体内研究[J].中国生化药物杂志, 2016, 36(5):47-50.
[50] Lin T S, Hsieh C H, Kuo C, et al. Sulfation pattern of chondroitin sulfate in human osteoarthritis cartilages re-veals a lower level of chondroitin-4-sulfate[J]. Carbohy-drate Polymers, 2020, 229:115496.
[51] Reginster J Y, Neuprez A, Lecart M P, et al. Role of glu-cosamine in the treatment for osteoarthritis[J]. Rheuma-tology International, 2012, 32(10):2959-2967.