Reviews

Research progress of anti-inflammatory drugs in osteoarthritis treatment

  • MA Zhiyan ,
  • HE Ziye ,
  • LIANG Jiaming ,
  • ZHAO Linlin ,
  • ZHANG Yingyu ,
  • LIU Yingying ,
  • LIU Yajun
Expand
  • 1. School of Public Health and Health Management, Shandong First Medical University, Ji'nan, 250117, China;
    2. Medical Science and Technology Innovation Center, Shandong First Medical University, Ji'nan 250117, China;
    3. School of Biomedical Sciences, Shandong First Medical University, Ji'nan 250117, China;
    4. National Orthopaedic Medical Center, Beijing Jishuitan Hospital, Beijing Institute of Orthopaedic Trauma, Beijing 100035, China

Received date: 2023-03-16

  Revised date: 2023-04-11

  Online published: 2024-07-08

Abstract

Osteoarthritis (OA) is the most common degenerative disease of joint, which is characterized by degeneration of articular cartilage and inflammation of articular capsule. Inflammatory reaction of articular cartilage is usually related to oxidative stress and secretion of proinflammatory cytokines in OA microenvironment. This article describes the role of inflammatory reaction in osteoarthritis and discusses the related progress in the treatment of osteoarthritis with cyclooxygenase, interleukin-1, inhibitor, prostaglandin synthetase inhibitor, and antioxidant stress drugs.

Cite this article

MA Zhiyan , HE Ziye , LIANG Jiaming , ZHAO Linlin , ZHANG Yingyu , LIU Yingying , LIU Yajun . Research progress of anti-inflammatory drugs in osteoarthritis treatment[J]. Science & Technology Review, 2024 , 42(11) : 66 -74 . DOI: 10.3981/j.issn.1000-7857.2023.03.00411

References

[1] Seo B B, Kwon Y, Kim J, et al. Injectable polymeric nanoparticle hydrogel system for long-term anti-inflamma-tory effect to treat osteoarthritis[J]. Bioactive Materials, 2022, 7:14-25.
[2] Li J, Han F, Ma J, et al. Targeting endogenous hydrogen peroxide at bone defects promotes bone repair[J]. Ad-vanced Functional Materials, 2021, 33:2005513.
[3] Chin K Y. The relationship between vitamin K and osteo-arthritis:A review of current evidence[J]. Nutrients, 2020, 12(5):1208.
[4] Chen D, Shen J, Zhao W W, et al. Osteoarthritis:Toward a comprehensive understanding of pathological mechanism[J]. Bone Research, 2017, 5(1):1-13.
[5] Murray C J L, Vos T, Lozano R, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 re-gions, 1990-2010:A systematic analysis for the Global Burden of Disease Study 2010[J]. The Lancet, 2012, 380(9859):2197-2223.
[6] Ansari M Y, Ahmad N, Haqqi T M. Oxidative stress and inflammation in osteoarthritis pathogenesis:Role of poly-phenols[J]. Biomedicine&Pharmacotherapy, 2020, 129:110452.
[7] Xie R J, Yao H, Mao A S, et al. Biomimetic cartilage-lu-bricating polymers regenerate cartilage in rats with early osteoarthritis[J]. Nature Biomedical Engineering, 2021, 5(10):1189-1201.
[8] Hunter D J, Bierma-Zeinstra S. Osteoarthritis[J]. The Lan-cet, 2019, 393(10182):1745-1759.
[9] Lepetsos P, Papavassiliou A G. ROS/oxidative stress sig-naling in osteoarthritis[J]. Biochimica et Biophysica Acta, 2016, 1862(4):576-591.
[10] Ackerman M J, Tester D J, Porter C B J. Swimming, a gene-specific arrhythmogenic trigger for inherited long QT syndrome[J]. Mayo Clinic Proceedings, 1999, 74(11):1088-1094.
[11] Wen Z H, Lin Y Y, Chang Y C, et al. The COX-2 inhib-itor etoricoxib reduces experimental osteoarthritis and nociception in rats:The roles of TGF-β1 and NGF ex-pressions in chondrocytes[J]. European Journal of Pain, 2020, 24(1):209-222.
[12] Mastbergen S C, Marijnissen A C, Vianen M E, et al. In-hibition of COX-2 by celecoxib in the canine groove model of osteoarthritis[J]. Rheumatology, 2006, 45(4):405-413.
[13] Clemett D, Goa K L. Celecoxib:A review of its use in osteoarthritis, rheumatoid arthritis and acute pain[J]. Drugs, 2000, 59(4):957-980.
[14] Hajjaji H E, Annette M, Jean-Pierre D, et al. Celecoxib has a positive effect on the overall metabolism of hyal-uronan andproteoglycans in human osteoarthritic carti-lage[J]. The Journal of Rheumatology, 2003, 30:2444-2451.
[15] Bazan L, Bendas E R, El Gazayerly O N, et al. Compara-tive pharmaceutical study on colon targeted micro-parti-cles of celecoxib:In-vitro-in-vivo evaluation[J]. Drug Delivery, 2016, 23(9):3339-3349.
[16] 刘美滟,毕波,彭家兰,等.塞来昔布治疗骨关节炎的研究进展[J].中国动物保健, 2021, 23(7):108-110.
[17] Tieppo V, Davani S, Towery C, et al. Oral versus topical diclofenac sodium in the treatment of osteoarthritis[J]. Journal of Pain&Palliative Care Pharmacotherapy, 2017, 31(2):113-120.
[18] Van Walsem A, Pandhi S, Nixon R M, et al. Relative benefit-risk comparing diclofenac to other traditional non-steroidal anti-inflammatory drugs and cyclooxygen-ase-2 inhibitors in patients with osteoarthritis or rheu-matoid arthritis:A network meta-analysis[J]. Arthritis Research&Therapy, 2015, 17(1):66.
[19] Gottesdiener K, Schnitzer T, Fisher C, et al. Results of a randomized, dose-ranging trial of etoricoxib in patients with osteoarthritis[J]. Rheumatology (Oxford, England), 2002, 41(9):1052-1061.
[20] He W, Wu Y, Liu Q, et al. Effect of Etoricoxib on miR-214 and inflammatory reaction in knee osteoarthritis pa-tients[J]. American Journal of Translational Research, 2021, 13(8):9586-9592.
[21] Sankaranarayanan R, Kumar D R, Altinoz M A, et al. Mechanisms of colorectal cancer prevention by aspirina literature review and perspective on the role of COXdependent and-independent pathways[J]. International Journal of Molecular Sciences, 2020, 21(23):9018.
[22] Ratchford S M, Lavin K, Perkins R, et al. Aspirin as a COX inhibitor and anti-inflammatory drug in human skeletal muscle[J]. Journal of Applied Physiology:Respi-ratory, Environmental and Exercise Physiology, 2017, 123(6):jap.01119.2016.
[23] Tung Y T, Wei C H, Yen C C, et al. Aspirin attenuates hyperoxia-induced acute respiratory distress syndrome (ARDS) by suppressing pulmonary inflammation via the NF-κB signaling pathway[J]. Frontiers in Pharmacology, 2021, 12:793107.
[24] Yin X L, Zhang Y T, Wen Y L, et al. Celecoxib allevi-ates zinc deficiency-promoted colon tumorigenesis through suppressing inflammation[J]. Aging, 2021, 13(6):8320-8334.
[25] Jenei-Lanzl Z, Meurer A, Zaucke F. Interleukin-1β sig-naling in osteoarthritis-chondrocytes in focus[J]. Cellu-lar Signalling, 2019, 53:212-223.
[26] Yu S P, Hunter D J. Intra-articular therapies for osteoar-thritis[J]. Expert Opinion on Pharmacotherapy, 2016, 17(15):2057-2071.
[27] Chen X, Zhu X, Dong J, et al. Reversal of epigenetic peroxisome proliferator-activated receptor-gamma sup-pression by diacerein alleviates oxidative stress and os-teoarthritis in mice[J]. Antioxid Redox Signal, 2022, 37(1-3):40-53.
[28] Permuy M, Guede D, López-Peña M, et al. Effects of di-acerein on cartilage and subchondral bone in early stag-es of osteoarthritis in a rabbit model[J]. BMC Veterinary Research, 2015, 11:143.
[29] Almezgagi M, Zhang Y, Hezam K, et al. Diacerein:Re-cent insight into pharmacological activities and molecu-lar pathways[J]. Biomedicine&Pharmacotherapy, 2020, 131:110594.
[30] Yaron M, Shirazi I, Yaron I, et al. eAnti-interleukin-1 effects of diacerein and Rhein in human osteoarthritic synovial tissue and cartilage cultures[J]. Osteoarthritis and Cartilage, 1999, 7(3):272-280.
[31] Mcfarland A J, Davey A K, Mcdermott C M, et al. Differ-ences in statin associated neuroprotection corresponds with either decreased production of IL-1β or TNF-α in an in vitro model of neuroinflammation-induced neuro-degeneration[J]. Toxicology and Applied Pharmacology, 2018, 344:56-73.
[32] 毛泽楷.普伐他汀通过恢复受损伤自噬以减轻白细胞介素1β诱导的软骨降解及作用机制研究[D].武汉:华中科技大学, 2020.
[33] Imamura M, Okunishi K, Ohtsu H, et al. Pravastatin at-tenuates allergic airway inflammation by suppressing an-tigen sensitisation, interleukin 17 production and anti-gen presentation in the lung[J]. Thorax, 2009, 64(1):44-49.
[34] Mao Z K, Wang P C, Pan Q Y, et al. Pravastatin allevi-ates interleukin 1β-induced cartilage degradation by re-storing impaired autophagy associated with MAPK path-way inhibition[J]. International Immunopharmacology, 2018, 64:308-318.
[35] Sun Q, Zhang Y Z, Ding Y L, et al. Inhibition of PGE2 in subchondral bone attenuates osteoarthritis[J]. Cells, 2022, 11(17):2760.
[36] Horecka A, Hordyjewska A, Blicharski T, et al. Osteoar-thritis of the knee-biochemical aspect of applied thera-pies:A review[J]. Bosnian Journal of Basic Medical Sci-ences, 2022, 22(4):488-498.
[37] Hsueh M F, Bolognesi M P, Wellman S S, et al. Anti-in-flammatory effects of naproxen sodium on human osteo-arthritis synovial fluid immune cells[J]. Osteoarthritis and Cartilage, 2020, 28(5):639-645.
[38] Martínez C S, Salgado L C, Martínez Z F. Effect of naproxen on serum concentrations of IL-I, IL-6, and TNF in patients with osteoarthritis[J]. Revista Alergia México, 2001, 48(4):119-122.
[39] Paglia D N, Kanjilal D, Kadkoy Y, et al. Naproxen treat-ment inhibits articular cartilage loss in a rat model of os-teoarthritis[J]. Journal of Orthopaedic Research, 2021, 39(10):2252-2259.
[40] Wang C J, Wang F, Lin F, et al. Naproxen attenuates os-teoarthritis progression through inhibiting the expression of prostaglandinl-endoperoxide synthase 1[J]. Journal of Cellular Physiology, 2019, 234(8):12771-12785.
[41] Khotib J, Utami N W, Gani M A, et al. The change of proinflammatory cytokine tumor necrosis factor α level in the use of meloxicam in rat model of osteoarthritis[J]. Journal of Basic and Clinical Physiology and Pharmacol-ogy, 2019, 30(6), doi:10.1515/jbcpp-2019-0331.
[42] Nagy E, Vajda E, Vari C, et al. Meloxicam ameliorates the cartilage and subchondral bone deterioration in monoiodoacetate-induced rat osteoarthritis[J]. PeerJ, 2017, 5:e3185.
[43] Brogden R N, Finder R M, Sawyer P R, et al. Naproxen:A review of its pharmacological properties and therapeu-tic efficacy and use[J]. Drugs, 1975, 9(5):326-363.
[44] 韩丽华.盐酸氨基葡萄糖胶囊治疗骨关节炎的现状及进展研究[J].中国现代药物应用, 2020, 14(8):232-233.
[45] 徐德钢,李金龙,王亮.硫酸氨基葡萄糖联合美洛昔康治疗骨关节炎的临床疗效[J].临床合理用药杂志, 2022, 15(3):136-138.
[46] 杨宝华.氨基葡萄糖联合硫酸软骨素治疗膝骨关节炎的效果[J].临床医学研究与实践, 2018, 3(35):83-84.
[47] ARTUZI F E, PURICELLI E, BARALDI C E, et al. Re-duction of osteoarthritis severity in the temporomandibu-lar joint of rabbits treated with chondroitin sulfate and glucosamine[J]. PLoS One, 2020, 15(4):e0231734.
[48] 周跃钢.硫酸软骨素的研究进展及其应用前景[J].中国药学杂志, 2016, 51(21):1821-1825.
[49] 魏庆宏.硫酸软骨素抑制实验性骨关节炎软骨细胞凋亡的体内研究[J].中国生化药物杂志, 2016, 36(5):47-50.
[50] Lin T S, Hsieh C H, Kuo C, et al. Sulfation pattern of chondroitin sulfate in human osteoarthritis cartilages re-veals a lower level of chondroitin-4-sulfate[J]. Carbohy-drate Polymers, 2020, 229:115496.
[51] Reginster J Y, Neuprez A, Lecart M P, et al. Role of glu-cosamine in the treatment for osteoarthritis[J]. Rheuma-tology International, 2012, 32(10):2959-2967.
Outlines

/