Exclusive:Foster New Quality Productive Forces to Strengthen High-Level Science and Technology Self-Reliance

Research progress on direct catalytic oxidation of coalbed methane to methanol

  • YUAN Liang ,
  • AN Shengxin ,
  • XUE Sheng ,
  • ZHANG Tong ,
  • ZHAO Shuaibo
Expand
  • 1. School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China;
    2. Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China;
    3. State Key Laboratory for Safe Mining of Deep Coal Resources and Environment Protection, Huainan 232001, China

Received date: 2023-03-24

  Revised date: 2023-09-18

  Online published: 2024-07-09

Abstract

Coalbed methane is a kind of associated and co-produced gas during the coal formation process. With methane as its main component, coalbed methane is also known as coal mine gas. With green and clean combustion characteristics and superior transportation advantages, methanol is an important basic chemical raw material and energy material. Converting coal mine gas into methanol, a liquid industrial raw material that is easy to store and transport, is a development direction of its comprehensive utilization, which is not only attractive to industrial demand, but also of great significance to alleviate energy crisis, reduce environmental pollution, and help to achieve carbon peaking and carbon neutrality goals. With methane as a model gas, various technical approaches of direct catalytic oxidation of methane to methanol and their recent research progress for are summarized in this paper. Moreover, it also gives a brief outlook on the research direction and development prospects in this field. We hope that this study will provide reference and guidance for the industrial production of methanol from coalbed methane by direct catalytic oxidation in the future.

Cite this article

YUAN Liang , AN Shengxin , XUE Sheng , ZHANG Tong , ZHAO Shuaibo . Research progress on direct catalytic oxidation of coalbed methane to methanol[J]. Science & Technology Review, 2024 , 42(12) : 125 -142 . DOI: 10.3981/j.issn.1000-7857.2023.03.00452

References

[1] 滕吉文, 王玉辰, 司芗, 等. 煤炭、煤层气多元转型是中国化石能源勘探开发与供需之本[J]. 科学技术与工程, 2021, 21(22):9169-9193.
[2] 自然资源部. 中国矿产资源报告2022[R/OL].[2023-09-18]. https://www.mnr.gov.cn/sj/sjfw/kc_19263/zgkczybg/202209/t20220921_2759600.html.
[3] 康宇, 张秀慧. 瓦斯制甲醇技术研究与安全性评价[J]. 中外企业家, 2018(31):132.
[4] 黄学敏, 郭旭青, 李飞, 等. 温和条件下甲烷直接催化制甲醇研究进展[J]. 天然气化工(C1化学与化工), 2020, 45(4):117-122.
[5] Liu W M, Li L, Lin S X, et al. Confined Ni-In intermetallic alloy nanocatalyst with excellent coking resistance for methane dry reforming[J]. Journal of Energy Chemistry, 2022, 65:34-47.
[6] Ravi M, Sushkevich V L, Knorpp A J, et al. Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites[J]. Nature Catalysis, 2019, 2(6):485-494.
[7] 王玉, 孙兰兰, 武光军, 等. 甲烷选择氧化制甲醇研究进展[J]. 化学反应工程与工艺, 2021, 37(6):555-575.
[8] Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker[J]. Frontiers in Microbiology, 2015, 6:1346.
[9] Alsayed A, Fergala A, Eldyasti A. Sustainable biogas mitigation and value-added resources recovery using methanotrophs intergrated into wastewater treatment plants[J]. Reviews in Environmental Science and Bio/Technology, 2018, 17(2):351-393.
[10] Kalyuzhnaya M G, Puri A W, Lidstrom M E. Metabolic engineering in methanotrophic bacteria[J]. Metabolic Engineering, 2015, 29:142-152.
[11] Pfluger A R, Wu W M, Pieja A J, et al. Selection of Type I and Type II methanotrophic proteobacteria in a fluidized bed reactor under non-sterile conditions[J]. Bioresource Technology, 2011, 102(21):9919-9926.
[12] Hur D H, Na J G, Lee E Y. Highly efficient bioconversion of methane to methanol using a novel type I Methylomonassp. DH-1 newly isolated from brewery waste sludge[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(2):311-318.
[13] Kim H J, Huh J, Kwon Y W, et al. Biological conversion of methane to methanol through genetic reassembly of native catalytic domains[J]. Nature Catalysis, 2019, 2(4):342-353.
[14] Raynes S, Shah M A, Taylor R A. Direct conversion of methane to methanol with zeolites:Towards understanding the role of extra-framework d-block metal and zeolite framework type[J]. Dalton Transactions, 2019, 48(28):10364-10384.
[15] Sazinsky M H, Lippard S J. Methane monooxygenase:functionalizing methane at iron and copper[M]//Kroneck P, Sosa T M. Sustaining Life on Planet Earth:Metalloenzymes Mastering Dioxygen and Other Chewy Gases. Cham:Springer, 2015:205-256.
[16] Koo C W, Tucci F J, He Y, et al. Recovery of particulate methane monooxygenase structure and activity in a lipid bilayer[J]. Science, 2022, 375(6586):1287-1291.
[17] Park D, Lee J. Biological conversion of methane to methanol[J]. Korean Journal of Chemical Engineering, 2013, 30(5):977-987.
[18] Duan C H, Luo M F, Xing X H. High-rate conversion of methane to methanol by methylosinus trichosporium OB3b[J]. Bioresource Technology, 2011, 102(15):7349-7353.
[19] Ren J, Lee H M, Thai T D, et al. Identification of a cytosine methyltransferase that improves transformation efficiency in Methylomonas sp. DH-1[J]. Biotechnol Biofuels, 2020, doi:10.1186/s13068-020-01846-1.
[20] Nguyen A, Hwang I, Lee O, et al. Functional analysis of methylomonas sp. DH-1 genome as a promising biocatalyst for bioconversion of methane to valuable chemicals[J]. Catalysts, 2018, 8(3):117.
[21] Patel S K S, Jeong J H, Mehariya S, et al. Production of methanol from methane by encapsulated methylosinus sporium[J]. Journal of Microbiology and Biotechnology, 2016, 26(12):2098-2105.
[22] Chen Y Y, Ishikawa M, Hori K. A novel inverse membrane bioreactor for efficient bioconversion from methane gas to liquid methanol using a microbial gas-phase reaction[J]. Biotechnol Biofuels, 2023, doi:10.1186/s13068-023-02267-6.
[23] 高教琪, 周雍进. 甲醇生物转化的机遇与挑战[J]. 合成生物学, 2020, 1(2):158-173.
[24] Alvarez-Galvan M C, Mota N, Ojeda M, et al. Direct methane conversion routes to chemicals and fuels[J]. Catalysis Today, 2011, 171(1):15-23.
[25] Zhang Q J, He D H, Li J L, et al. Comparatively high yield methanol production from gas phase partial oxidation of methane[J]. Applied Catalysis A:General, 2002, 224(1-2):201-207.
[26] Gesser H D, Hunter N R, Prakash C B. The direct conversion of methane to methanol by controlled oxidation[J]. Chemical Reviews, 1985, 85(4):235-244.
[27] Foulds G A, Gray B F. Homogeneous gas-phase partial oxidation of methane to methanol and formaldehyde[J]. Fuel Processing Technology, 1995, 42(2-3):129-150.
[28] Brown M J, Parkyns N D. Progress in the partial oxidation of methane to methanol and formaldehyde[J]. Catalysis Today, 1991, 8(3):305-335.
[29] Holmen A. Direct conversion of methane to fuels and chemicals[J]. Catalysis Today, 2009, 142(1-2):2-8.
[30] Burch R, Squire G D, Tsang S C. Direct conversion of methane into methanol[J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases, 1989, 85(10):3561.
[31] Gesser H D. The direct conversion of methane ro methanol by controlled oxidation[C]//VI International Symposium on Alcohol Fuels Technology. Washington, D. C.:American Chemical Society, 1984.
[32] Arutyunov V S. Recent eesults on fast flow gas-phase partial oxidation of lower alkanes[J]. Journal of Energy Chemistry, 2004, 13(1):10-22.
[33] 张昕, 贺德华, 张启俭, 等. 甲烷气相均相选择氧化合成甲醇[J]. 石油化工, 2003, 32(3):195-199.
[34] Otsuka K, Takahashi R, Amakawa K, et al. Partial oxidation of light alkanes by NOx in the gas phase[J]. Catalysis Today, 1998, 45(1-4):23-28.
[35] Teng Y H, Yamaguchi Y, Takemoto T, et al. Enhancement effects of methanol on the reactivity for methane partial oxidation in the gas phase reaction of CH4-O2-NO2[J]. Chemical Communications, 2000(5):371-372.
[36] Periana R A, Taube D J, Evitt E R, et al. A mercurycatalyzed, high-yield system for the oxidation of methane to methanol[J]. Science, 1993, 259(5093):340-343.
[37] Periana R A, Taube D J, Gamble S, et al. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative[J]. Science, 1998, 280(5363):560-564.
[38] 徐锋, 吴扬, 朱丽华. Pt(bipy)Cl2催化低浓度瓦斯液相部分氧化制甲醇[J]. 辽宁石油化工大学学报, 2016, 36(6):1-4.
[39] 王克, 汪啸, 宋术岩. 甲烷直接催化氧化制备甲醇近期研究进展[J]. 应用化学, 2022, 39(4):540-558.
[40] Gretz E, Oliver T F, Sen A. Carbon-hydrogen bond activation by electrophilic transition-metal compounds. Palladium(II)-mediated oxidation of arenes and alkanes including methane[J]. Journal of the American Chemical Society, 1987, 109(26):8109-8111.
[41] 李崇, 陈立宇, 张瑾, 等. 醋酸与磷钨钼酸混合溶剂中甲烷部分氧化研究[J]. 化学工程, 2010, 38(7):58-61.
[42] Zhang L, Sun Z X, Lang J Y, et al. Direct conversion of methane to oxygenates catalyzed by iron(III) chloride in water at near ambient temperature[J]. International Journal of Energy Research, 2021, 45(2):2581-2592.
[43] Lieberman R L, Rosenzweig A C. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane[J]. Nature, 2005, 434(7030):177-182.
[44] Balasubramanian R, Smith S M, Rawat S, et al. Oxidation of methane by a biological dicopper centre[J]. Nature, 2010, 465(7294):115-119.
[45] Wang V C C, Maji S M, Chen P P Y, et al. Alkane oxidation:Methane monooxygenases, related enzymes, and their biomimetics[J]. Chemical Reviews, 2017, 117(13):8574-8621.
[46] Tinberg C E, Lippard S J. Dioxygen activation in soluble methane monooxygenase[J]. Accounts of Chemical Research, 2011, 44(4):280-288.
[47] Ayodele O B. Structure and reactivity of ZSM-5 supported oxalate ligand functionalized nano-Fe catalyst for low temperature direct methane conversion to methanol[J]. Energy Conversion and Management, 2016, 126:537-547.
[48] Ágnes S, Li G N, Gascon J, et al. Mechanistic complexity of methane oxidation with H2O2 by single-site Fe/ZSM-5 catalyst[J]. ACS Catalysis, 2018, 8(9):7961-7972.
[49] Osadchii D Y, Olivos-Suarez A I, Szécsényi Á, et al. Isolated Fe sites in metal organic frameworks catalyze the direct conversion of methane to methanol[J]. ACS Catalysis, 2018, 8(6):5542-5548.
[50] Cui X J, Li H B, Wang Y, et al. Room-temperature methane conversion by graphene-confined single iron atoms[J]. Chem, 2018, 4(8):1902-1910.
[51] Xiao P P, Wang Y, Nishitoba T, et al. Selective oxidation of methane to methanol with H2O2 over an Fe-MFI zeolite catalyst using sulfolane solvent[J]. Chemical Communications, 2019, 55(20):2896-2899.
[52] Liu C C, Mou C Y, F Yu S S, et al. Heterogeneous formulation of the tricopper complex for efficient catalytic conversion of methane into methanol at ambient temperature and pressure[J]. Energy & Environmental Science, 2016, 9(4):1361-1374.
[53] Shavi R, Hiremath V, Seo J G. Radical-initiated oxidative conversion of methane to methanol over metallic iron and copper catalysts[J]. Molecular Catalysis, 2018, 445:232-239.
[54] Hammond C, Forde M M, Ab Rahim M H, et al. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5[J]. Angewandte Chemie, 2012, 51(21):5129-5133.
[55] Fang Z H, Murayama H, Zhao Q, et al. Selective mild oxidation of methane to methanol or formic acid on FeMOR catalysts[J]. Catalysis Science & Technology, 2019, 9(24):6946-6956.
[56] Xu J, Armstrong R D, Shaw G, et al. Continuous selective oxidation of methane to methanol over Cu-and Femodified ZSM-5 catalysts in a flow reactor[J]. Catalysis Today, 2016, 270:93-100.
[57] Kwon Y, Kim T Y, Kwon G, et al. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion[J]. Journal of the American Chemical Society, 2017, 139(48):17694-17699.
[58] Tang Y, Li Y T, Fung V, et al. Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions[J]. Nature Communications, 2018, 9:1231.
[59] Liu H A, Kang L L, Wang H A, et al. Ru single-atom catalyst anchored on sulfated zirconia for direct methane conversion to methanol[J]. Chinese Journal of Catalysis, 2023, 46:64-71.
[60] Zhao Q, Liu B, Xu Y B, et al. Insight into the active site and reaction mechanism for selective oxidation of methane to methanol using H2O2 on a Rh1/ZrO2 catalyst[J]. New Journal of Chemistry, 2020, 44(4):1632-1639.
[61] Wen J H, Guo D, Wang G C. Structure-sensitivity of direct oxidation methane to methanol over Rhn/ZrO2-x (101) (n=1, 4, 10) surfaces:A DFT study[J]. Applied Surface Science, 2021, 555:149690.
[62] Qi G D, Davies T E, Nasrallah A, et al. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2[J]. Nature Catalysis, 2022, 5(1):45-54.
[63] Serra-Maia R, Michel F M, Kang Y J, et al. Decomposition of hydrogen peroxide catalyzed by AuPd nanocatalysts during methane oxidation to methanol[J]. ACS Catalysis, 2020, 10(9):5115-5123.
[64] Sajith P K, Staykov A, Yoshida M, et al. Theoretical study of the direct conversion of methane to methanol using H2O2 as an oxidant on Pd and Au/Pd surfaces[J] The Journal of Physical Chemistry C, 2020, 124(24):13231-13239.
[65] Yan Y, Chen C L, Zou S H, et al. High H2O2 utilization promotes selective oxidation of methane to methanol at low temperature[J]. Frontiers in Chemistry, 2020, 8:252.
[66] Agarwal N, Freakley S J, Mcvicker R U, et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions[J]. Science, 2017, 358(6360):223-227.
[67] Mcvicker R, Agarwal N, Freakley S J, et al. Low temperature selective oxidation of methane using gold-palladium colloids[J]. Catalysis Today, 2020, 342:32-38.
[68] Dummer N F, Willock D J, He Q A, et al. Methane oxidation to methanol[J]. Chemical Reviews, 2023, 123(9):6359-6411.
[69] Williams C, Carter J H, Dummer N F, et al. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization[J]. ACS Catalysis, 2018, 8(3):2567-2576.
[70] Ab Rahim M H, Forde M M, Jenkins R L, et al. Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles[J]. Angewandte Chemi, 2013, 52(4):1280-1284.
[71] Rahim M H A, Armstrong R D, Hammond C, et al. Low temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts[J]. Catalysis Science & Technology, 2016, 6(10):3410-3418.
[72] Jin Z, Wang L, Zuidema E, et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol[J]. Science, 2020, 367(6474):193-197.
[73] He Y L, Luan C H, Fang Y A, et al. Low-temperature direct conversion of methane to methanol over carbon materials supported Pd-Au nanoparticles[J]. Catalysis Today, 2020, 339:48-53.
[74] Bai S X, Xu Y, Wang P T, et al. Activating and converting CH4 to CH3OH via the CuPdO2/CuO nanointerface[J]. ACS Catalysis, 2019, 9(8):6938-6944.
[75] German E D, Sheintuch M. Predicting CH4 dissociation kinetics on metals:Trends, sticking coefficients, H tunneling, and kinetic isotope effect[J]. The Journal of Physical Chemistry C, 2013, 117(44):22811-22826.
[76] Bai S X, Yao Q, Xu Y, et al. Strong synergy in a lichenlike RuCu nanosheet boosts the direct methane oxidation to methanol[J]. Nano Energy, 2020, 71:104566.
[77] Knops-Gerrits P P, Goddard W A III. Methane partial oxidation in iron zeolites:theory versus experiment[J]. Journal of Molecular Catalysis A:Chemical, 2001, 166(1):135-145.
[78] Hall J N, Bollini P. Low-temperature, ambient pressure oxidation of methane to methanol over every tri-iron node in a metal-organic framework material[J]. Chemistry-A European Journal, 2020, 26(70):16639-16643.
[79] Roongcharoen T, Impeng S, Kungwan N, et al. Revealing the effect of N-content in Fe doped graphene on its catalytic performance for direct oxidation of methane to methanol[J]. Applied Surface Science, 2020, 527:146833.
[80] Dasireddy V D B C, Hanzel D, Bharuth-Ram K, et al. The effect of oxidant species on direct, non-syngas conversion of methane to methanol over an FePO 4 catalyst material[J]. RSC Advances, 2019, 9(53):30989-31003.
[81] Kulkarni A R, Zhao Z J, Siahrostami S, et al. Cation-exchanged zeolites for the selective oxidation of methane to methanol[J]. Catalysis Science & Technology, 2018, 8(1):114-123.
[82] Park M B, Ahn S H, Mansouri A, et al. Comparative study of diverse copper zeolites for the conversion of methane into methanol[J]. ChemCatChem, 2017, 9(19):3705-3713.
[83] Ikuno T, Zheng J A, Vjunov A, et al. Methane oxidation to methanol catalyzed by Cu-oxo clusters stabilized in NU-1000 metal-organic framework[J]. Journal of the American Chemical Society, 2017, 139(30):10294-10301.
[84] Le H V, Parishan S, Sagaltchik A, et al. Stepwise methane-to-methanol conversion on CuO/SBA-15[J]. Chemistry -A European Journal, 2018, 24(48):12592-12599.
[85] Li Y, Liu N, Dai C N, et al. Synergistic effect of neighboring Fe and Cu cation sites boosts FenCum-BEA activity for the continuous direct oxidation of methane to methanol[J]. Catalysts, 2021, 11(12):1444.
[86] Bunting R J, Thompson J, Hu P. The mechanism and ligand effects of single atom rhodium supported on ZSM-5 for the selective oxidation of methane to methanol[J]. Physical Chemistry Chemical Physics, 2020, 22(20):11686-11694.
[87] Kye S H, Park H S, Zhang R Q, et al. Partial oxidation of methane to methanol by isolated Pt catalyst supported on a CeO 2 nanoparticle[J]. The Journal of Chemical Physics, 2020, 152(5):054715.
[88] Yang L, Huang J X, Ma R, et al. Metal-organic framework-derived IrO 2/CuO catalyst for selective oxidation of methane to methanol[J]. ACS Energy Letters, 2019, 4(12):2945-2951.
[89] Barona M, Snurr R Q. Exploring the tunability of trimetallic MOF nodes for partial oxidation of methane to methanol[J]. ACS Applied Materials & Interfaces, 2020, 12(25):28217-28231.
[90] Yuan J Y, Zhang W H, Li X X, et al. A high performance catalyst for methane conversion to methanol:graphene supported single atom Co[J]. Chemical Communications, 2018, 54(18):2284-2287.
[91] Sharma R, Poelman H, Marin G B, et al. Approaches for selective oxidation of methane to methanol[J]. Catalysts, 2020, 10(2):194.
[92] Lustemberg P G, Palomino R M, Gutiérrez R A, et al. Direct conversion of methane to methanol on Ni-ceria surfaces:Metal-support interactions and water-enabled catalytic conversion by site blocking[J]. Journal of the American Chemical Society, 2018, 140(24):7681-7687.
[93] Arminio-Ravelo J A, Escudero-Escribano M. Strategies towardthe sustainable electrochemical oxidation of methane to methanol[J]. Current Opinion in Green and Sustainable Chemistry, 2021, 30:100489.
[94] Ogura K, Migita C T, Fujita M. Conversion of methane to oxygen-containing compounds by the photochemical reaction[J]. Industrial & Engineering Chemistry Research, 1988, 27(8):1387-1390.
[95] López-Martín A, Caballero A, Colón G. Structural and surface considerations on Mo/ZSM-5 systems for methane dehydroaromatization reaction[J]. Molecular Catalysis, 2020, 486:110787.
[96] Tian Y D, Piao L Y, Chen X B. Research progress on the photocatalytic activation of methane to methanol[J]. Green Chemistry, 2021, 23(10):3526-3541.
[97] López H H, Martínez A. Selective photo-assisted oxidation of methane into formaldehyde on mesoporous VOx/SBA-15 catalysts[J]. Catalysis Letters, 2002, 83(1):37-41.
[98] Tahir M B, Nabi G, Rafique M, et al. Nanostructuredbased WO 3 photocatalysts:Recent development, activity enhancement, perspectives and applications for wastewater treatment[J]. International Journal of Environmental Science and Technology, 2017, 14(11):2519-2542.
[99] Yuniar G, Saputera W H, Sasongko D, et al. Recent advances in photocatalytic oxidation of methane to methanol[J]. Molecules, 2022, 27(17):5496.
[100] Taylor C E, Noceti R P. New developments in the photocatalytic conversion of methane to methanol[J]. Catalysis Today, 2000, 55(3):259-267.
[101] Hameed A, Ismail I M I, Aslam M, et al. Photocatalytic conversion of methane into methanol:Performance of silver impregnated WO3[J]. Applied Catalysis A:General, 2014, 470:327-335.
[102] Yang J A, Hao J Y, Wei J P, et al. Visible-light-driven selective oxidation of methane to methanol on amorphous FeOOH coupled m-WO3[J]. Fuel, 2020, 266:117104.
[103] Zeng Y, Tang Z Y, Wu X Y, et al. Photocatalytic oxidation of methane to methanol by tungsten trioxide-supported atomic gold at room temperature[J]. Applied Catalysis B:Environmental, 2022, 306:120919.
[104] Villa K, Murcia-López S, Andreu T, et al. Mesoporous WO3 photocatalyst for the partial oxidation of methane to methanol using electron scavengers[J]. Applied Catalysis B:Environmental, 2015, 163:150-155.
[105] Villa K, Murcia-López S, Morante J R, et al. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol[J]. Applied Catalysis B:Environmental, 2016, 187:30-36.
[106] Noceti R P, Taylor C E, D'este J R. Photocatalytic conversion of methane[J]. Catalysis Today, 1997, 33(1-3):199-204.
[107] Wang X C, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1):76-80.
[108] Kessler F K, Zheng Y, Schwarz D, et al. Functional carbon nitride materials-Design strategies for electrochemical devices[J]. Nature Reviews Materials, 2017, 2:17030.
[109] Miller T S, Jorge A B, Suter T M, et al. Carbon nitrides:synthesis and characterization of a new class of functional materials[J]. Physical Chemistry Chemical Physics, 2017, 19(24):15613-15638.
[110] Martin D J, Qiu K P, Shevlin S A, et al. Highly efficient photocatalytic H2 Evolution from water using visible light and structure-controlled graphitic carbon nitride[J]. Angewandte Chemie International Edition, 2014, 53(35):9240-9245.
[111] Zhou Y Y, Zhang L, Wang W Z. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis[J]. Nature Communications, 2019, 10:506.
[112] Xie J J, Jin R X, Li A, et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species[J]. Nature Catalysis, 2018, 1(11):889-896.
[113] Song H, Meng X G, Wang S Y, et al. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O 2 on cocatalysts/ZnO at room temperature in water[J]. Journal of the American Chemical Society, 2019, 141(51):20507-20515.
[114] Lee B, Sakamoto Y, Hirabayashi D, et al. Direct oxidation of methane to methanol over proton conductor/metal mixed catalysts[J]. Journal of Catalysis, 2010, 271(2):195-200.
[115] Tomita A, Nakajima J, Hibino T. Direct oxidation of methane to methanol at low temperature and pressure in an electrochemical fuel cell[J]. Angewandte Chemie International Edition, 2008, 47(8):1462-1464.
[116] Kim R S, Surendranath Y. Electrochemical reoxidation enables continuous methane-to-methanol catalysis with aqueous Pt salts[J]. ACS Central Science, 2019, 5(7):1179-1186.
[117] Natinsky B S, Lu S T, Copeland E D, et al. Solution catalytic cycle of incompatible steps for ambient air oxidation of methane to methanol[J]. ACS Central Science, 2019, 5(9):1584-1590.
[118] O'Reilly M E, Kim R S, Oh S, et al. Catalytic methane monofunctionalization by an electrogenerated high-valent Pd intermediate[J]. ACS Central Science, 2017, 3(11):1174-1179.
[119] Jiang H M, Zhang L T, Han Z W, et al. Direct conversion of methane to methanol by electrochemical methods[J]. Green Energy & Environment, 2022, 7(6):1132-1142.
[120] Wang L, Liu S Y, Jiang H M, et al. Electrochemical generation of ROS in ionic liquid for the degradation of lignin model compound[J]. Journal of the Electrochemical Society, 2018, 165(11):H705-H710.
Outlines

/