Exclusive:Foster New Quality Productive Forces to Strengthen High-Level Science and Technology Self-Reliance

Thermal runaway and prevention of lithium-ion batteries

  • LI Cunpu ,
  • TANG Xiaoxia ,
  • WEI Zidong
Expand
  • 1. Chongqing University, School of Chemistry and Chemical Engineering, Chongqing 400044, China;
    2. Suining Lithium Battery Research Institute of Chongqing University (SLiBaC), Suining 629000, China

Received date: 2024-04-11

  Revised date: 2024-05-26

  Online published: 2024-07-09

Abstract

With the development and utilization of renewable energy, lithium-ion (Li-ion) batteries has been regarded as one of the most important energy storage technologies by virtue of their high energy density, long cycle life and low self-discharge. However, the frequent occurrence of fire or explosion caused by thermal runaway of lithium-ion batteries makes it urgent to improve their safety performance. Because of the battery external abuse, Li-ion batteries thermal runaway occurs, resulting in the growth of lithium dendrites inside the battery which will cause short circuits, electrode decomposition and gas precipitation, flammable electrolyte decomposition, leading to combustion and explosion. With the internal components of Li-ion batteries as a starting point, based on the study of the thermal runaway mechanism of Li-ion batteries, this paper made a detailed analysis on the thermal runaway triggers in terms of the positive and negative electrodes and Li-ion battery electrolyte; It also elaborated the reaction processes, within the batteries during the thermal runaway in a comprehensive way; For the thermal runway of Li-ion battery, the author proposed internal improvement strategies such as inhibiting the growth of lithium dendrites, designing electrolyte, reducing the release of positive oxygen and optimizing the diaphragm. Integrated with the external thermal management of the batteries, it will realize dual protection both inside and outside of the Li-ion batteries.

Cite this article

LI Cunpu , TANG Xiaoxia , WEI Zidong . Thermal runaway and prevention of lithium-ion batteries[J]. Science & Technology Review, 2024 , 42(12) : 178 -192 . DOI: 10.3981/j.issn.1000-7857.2024.03.01161

References

[1] Duan J, Tang X, Dai H F, et al. Building safe lithium-ion batteries for electric vehicles:A review[J]. Electrochemical Energy Reviews, 2020, 3(1):1-42.
[2] Zhang X Q, Zhao C Z, Huang J Q, et al. Recent advances in energy chemical engineering of next-generation lithium batteries[J]. Engineering, 2018, 4(6):191-225.
[3] Galushkin N E, Yazvinskaya N N, Galushkin D N. Mechanism of thermal runaway in lithium-ion cells[J]. Journal of the Electrochemical Society, 2018, 165(7):A1303-A1308.
[4] Winter M, Barnett B, Xu K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23):11433-11456.
[5] Zhang H, Li C M, Eshetu G G, et al. From solid-solution electrodes and the rocking-chair concept to today's batteries[J]. Angewandte Chemie (International Ed in English), 2020, 59(2):534-538.
[6] Cao X W, Ma C, Luo L, et al. Nanofiber materials for lithium-ion batteries[J]. Advanced Fiber Materials, 2023, 5(4):1141-1197.
[7] Nam K H, Jeong S, Yu B C, et al. Li-compound anodes:A classification for high-performance Li-ion battery anodes[J]. ACS Nano, 2022, 16(9):13704-13714.
[8] Kong L C, Li Y, Feng W. Strategies to solve lithium battery thermal runaway:From mechanism to modification[J]. Electrochemical Energy Reviews, 2021, 4(4):633-679.
[9] Xiang J W, Wei Y, Zhong Y, et al. Building practical high-voltage cathode materials for lithium-ion batteries[J]. Advanced Materials, 2022, 34(52):e2200912.
[10] Murdock Beth E, Toghill K E, Nuria T. A perspective on the sustainability of cathode materials used in lithiumion batteries[J]. Advanced Energy Materials, 2021, 11(39):2102028.
[11] Cui Z H, Manthiram A. Thermal stability and outgassing behaviors of high-nickel cathodes in lithium-ion batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(43):e202307243.
[12] 薛浩亮, 王小飞, 周思飞, 等. 电解液:锂电池的"流动心脏"[J]. 中国石化, 2024(1):54-58.
[13] 冯联友. 锂离子电池不一致性改善措施研究[J]. 质量管理, 2023, 12:103-106.
[14] 李小龙. 锂离子电池充放电特性及安全性检测研究[D]. 成都:电子科技大学, 2018.
[15] Su M M, Huang G, Wang S Q, et al. High safety separators for rechargeable lithium batteries[J]. Science China Chemistry, 2021, 64(7):1131-1156.
[16] Feng X N, Ren D S, He X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4):743-770.
[17] Li B R, Chao Y, Li M C, et al. A review of solid electrolyte interphase(SEI) and dendrite formation in lithium batteries[J]. Electrochemical Energy Reviews, 2023, 6(1):7.
[18] Dong Q, Wang T, Gan R, et al. Separators based on bhe dynamic tip-occupying electrostatic shield effect for dendrite-free lithium-metal batteries[J]. Advanced Sustainable Systems, 2021, 6(3):2100386.
[19] Hou X Y, Kimura Y, Tamenori Y, et al. Thermodynamic analysis enables quantitative evaluation of lattice oxygen stability in Li-ion battery cathodes[J]. ACS Energy Letters, 2022, 7(5):1687-1693.
[20] Huang W, Li W J, Wang L, et al. Structure and charge regulation strategy enabling superior cyclability for Nirich layered cathode materials[J]. Small, 2021, 17(52):e2104282.
[21] Ding J F, Zhang Y T, Xu R, et al. Review on lithium metal anodes towards high energy density batteries[J]. Green Energy & Environment, 2023, 8(6):1509-1530.
[22] Wang Q S, Mao B B, Stoliarov S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73:95-131.
[23] 郑开汇. 阻燃电解液的燃烧特性研究[D]. 太原:中北大学, 2021.
[24] Guo Z X, Yang S G, Zhao W Y, et al. Overdischarge-induced evolution of Cu dendrites and degradation of mechanical properties in lithium-ion batteries[J]. Journal of Energy Chemistry, 2023, 32(3):497-506.
[25] Guo J X, Gao C, Liu H, et al. Inherent thermal-responsive strategies for safe lithium batteries[J]. Journal of Energy Chemistry, 2024, 89:519-534.
[26] Barkholtz H M, Preger Y, Ivanov S, et al. Multi-scale thermal stability study of commercial lithium-ion batteries as a function of cathode chemistry and state-ofcharge[J]. Journal of Power Sources, 2019, 435:226777.
[27] Zhang Y B, Feng J B, Qin J D, et al. Pathways to nextgeneration fire-safe alkali-ion batteries[J]. Advanced Science, 2023, 10(24):e2301056.
[28] Jiang X M, Chen Y J, Meng X K, et al. The impact of electrode with carbon materials on safety performance of lithium-ion batteries:A review[J]. Carbon, 2022, 191:448-470.
[29] Parhizi M, Ahmed M, Jain A. Determination of the core temperature of a Li-ion cell during thermal runaway[J]. Journal of Power Sources, 2017, 370:27-35.
[30] Tan J, Matz J, Dong P, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase[J]. Advanced Energy Materials, 2021, 11(16):2100046.
[31] Liu W, Liu P C, Mitlin D. Review of emerging concepts in sei analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes[J]. Advanced Energy Materials, 2020, 10(43):2002297.
[32] Adenusi H, Chass G A, Passerini S, et al. Lithium batteries and the solid electrolyte interphase (SEI)-Progress and outlook[J]. Advanced Energy Materials, 2023, 13(10):2203307.
[33] 崔灿. 锂离子动力蓄电池安全性的研究与应用[D]. 北京:清华大学, 2014.
[34] 朱磊. 热-电滥用下锂离子电池热失控特性研究[D]. 镇江:江苏大学, 2021.
[35] 朱学慢. 锂电池的热失控研究[D]. 上海:上海海洋大学, 2021.
[36] Lagadec M F, Zahn R, Wood V. Characterization and performance evaluation of lithium-ion battery separators[J]. Nature Energy, 2019, 4:16-25.
[37] 李晨, 刘桂林, 王春宁, 等. 热失控下锂电池内部反应综述[J]. 电源技术, 2020, 44(12):1851-1854.
[38] Wan S, Ma W T, Wang Y T, et al. Electrolytes design for extending the temperature adaptability of lithium-ion batteries:From fundamentals to strategies[J]. Advanced Materials, 2024, 36(21):e2311912.
[39] Gao X, Zhou Y N, Han D, et al. Thermodynamic understanding of Li-dendrite formation[J]. Joule, 2020, 4(9):1864-1879.
[40] Hao F, Verma A, Mukherjee P P. Mechanistic insight into dendrite-SEI interactions for lithium metal electrodes[J]. Journal of Materials Chemistry A, 2018, 6(40):19664-19671.
[41] 田刚领, 李娟, 伍远锞, 等. 锂离子电池安全材料的研究进展[J]. 电池, 2023, 53(3):347-351.
[42] Wang J, Li L G, Hu H M, et al. Toward dendrite-free metallic lithium anodes:From structural design to optimal electrochemical diffusion kinetics[J]. ACS Nano, 2022, 16(11):17729-17760.
[43] Jin S, Deng Y, Chen P Y, et al. Solid-adsorbed polymer-electrolyte interphases for stabilizing metal anodes in aqueous Zn and non-aqueous Li batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(18):e202300823.
[44] Zeng J K, Liu Q T, Jia D Y, et al. A polymer brushbased robust and flexible single-ion conducting artificial SEI film for fast charging lithium metal batteries[J]. Energy Storage Materials, 2021, 41:697-702.
[45] Xie J, Wang J Y, Lee H R, et al. Engineering stable interfaces for three-dimensional lithium metal anodes[J]. Science Advances, 2018, 4(7):eaat5168.
[46] Yang Z, Dang Y, Zhai P, et al. Single-atom reversible lithiophilic sites toward stable lithium anodes[J]. Advanced Energy Materials, 2022, 12(8):2103368.
[47] Chen Z X, Shen H, Zhu Y C, et al. Advanced low-flammable pyrrole ionic liquid electrolytes for high safety lithium-ion batteries[J]. Journal of Energy Storage, 2023, 72:108289.
[48] Liu K, Liu Y Y, Lin D C, et al. Materials for lithiumion battery safety[J]. Science Advances, 2018, 4(6):eaas9820.
[49] Wang L, Chen Z, Liu Y, et al. Safety perceptions of solid-state lithium metal batteries[J]. eTransportation, 2023, 16:100239.
[50] Wu L, Pei F, Cheng D, et al. Flame-retardant polyurethane-based solid-state polymer electrolytes enabled by covalent bonding for lithium metal batteries[J]. Advanced Functional Materials, 2023:2310084.
[51] Zhang W R, Koverga V, Liu S F, et al. Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries[J]. Nature Energy, 2024, 9:386-400.
[52] Wang E, Xiao D, Wu T, et al. Stabilizing oxygen by high-valance element doping for high-performance Li rich layered oxides[J]. Battery Energy, 2023, 2:20220030.
[53] Lu S Q, Guo S J, Qi M Y, et al. Precise surface control of cathode materials for stable lithium-ion batteries[J]. Chemical Communications, 2022, 58(10):1454-1467.
[54] Yang X, Wang C, Yan P, et al. Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering[J]. Advanced Energy Materials, 2022, 12:2200197.
[55] Liu Y, Li C, Li C X, et al. Porous, robust, thermally stable, and flame retardant nanocellulose/polyimide separators for safe lithium-ion batteries[J]. Journal of Materials Chemistry A, 2023, 11(43):23360-23369.
[56] Peng L, Kong X, Li H, et al. A Rational design for a high-safety lithium-ion battery assembled with a heatproof-fireproof bifunctional separator[J]. Advanced Functional Materials, 2021, 31:2008537.
[57] 陈大分. 动力锂离子电池系统热管理研究[D]. 北京:北京交通大学, 2017.
[58] 郭莹莹. 锂离子电池热管理系统冷却方式研究[D]. 焦作:河南理工大学, 2021.
[59] Yang H, Wang Z, Li M, et al. A manifold channel liquid cooling system with low-cost and high temperature uniformity for lithium-ion battery pack thermal management[J]. Thermal Science and Engineering Progress, 2023, 41:101857.
[60] Jing Y G, Zhao Z C, Cao X L, et al. Ultraflexible, costeffective and scalable polymer-based phase change composites via chemical cross-linking for wearable thermal management[J]. Nature Communications, 2023, 14(1):8060.
[61] Wang Y, Peng P, Cao W, et al. Experimental study on a novel compact cooling system for sylindrical lithium-ion battery module[J]. Applied Thermal Engineering, 2020, 180:115772.
Outlines

/