[1] Duan J, Tang X, Dai H F, et al. Building safe lithium-ion batteries for electric vehicles:A review[J]. Electrochemical Energy Reviews, 2020, 3(1):1-42.
[2] Zhang X Q, Zhao C Z, Huang J Q, et al. Recent advances in energy chemical engineering of next-generation lithium batteries[J]. Engineering, 2018, 4(6):191-225.
[3] Galushkin N E, Yazvinskaya N N, Galushkin D N. Mechanism of thermal runaway in lithium-ion cells[J]. Journal of the Electrochemical Society, 2018, 165(7):A1303-A1308.
[4] Winter M, Barnett B, Xu K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23):11433-11456.
[5] Zhang H, Li C M, Eshetu G G, et al. From solid-solution electrodes and the rocking-chair concept to today's batteries[J]. Angewandte Chemie (International Ed in English), 2020, 59(2):534-538.
[6] Cao X W, Ma C, Luo L, et al. Nanofiber materials for lithium-ion batteries[J]. Advanced Fiber Materials, 2023, 5(4):1141-1197.
[7] Nam K H, Jeong S, Yu B C, et al. Li-compound anodes:A classification for high-performance Li-ion battery anodes[J]. ACS Nano, 2022, 16(9):13704-13714.
[8] Kong L C, Li Y, Feng W. Strategies to solve lithium battery thermal runaway:From mechanism to modification[J]. Electrochemical Energy Reviews, 2021, 4(4):633-679.
[9] Xiang J W, Wei Y, Zhong Y, et al. Building practical high-voltage cathode materials for lithium-ion batteries[J]. Advanced Materials, 2022, 34(52):e2200912.
[10] Murdock Beth E, Toghill K E, Nuria T. A perspective on the sustainability of cathode materials used in lithiumion batteries[J]. Advanced Energy Materials, 2021, 11(39):2102028.
[11] Cui Z H, Manthiram A. Thermal stability and outgassing behaviors of high-nickel cathodes in lithium-ion batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(43):e202307243.
[12] 薛浩亮, 王小飞, 周思飞, 等. 电解液:锂电池的"流动心脏"[J]. 中国石化, 2024(1):54-58.
[13] 冯联友. 锂离子电池不一致性改善措施研究[J]. 质量管理, 2023, 12:103-106.
[14] 李小龙. 锂离子电池充放电特性及安全性检测研究[D]. 成都:电子科技大学, 2018.
[15] Su M M, Huang G, Wang S Q, et al. High safety separators for rechargeable lithium batteries[J]. Science China Chemistry, 2021, 64(7):1131-1156.
[16] Feng X N, Ren D S, He X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4):743-770.
[17] Li B R, Chao Y, Li M C, et al. A review of solid electrolyte interphase(SEI) and dendrite formation in lithium batteries[J]. Electrochemical Energy Reviews, 2023, 6(1):7.
[18] Dong Q, Wang T, Gan R, et al. Separators based on bhe dynamic tip-occupying electrostatic shield effect for dendrite-free lithium-metal batteries[J]. Advanced Sustainable Systems, 2021, 6(3):2100386.
[19] Hou X Y, Kimura Y, Tamenori Y, et al. Thermodynamic analysis enables quantitative evaluation of lattice oxygen stability in Li-ion battery cathodes[J]. ACS Energy Letters, 2022, 7(5):1687-1693.
[20] Huang W, Li W J, Wang L, et al. Structure and charge regulation strategy enabling superior cyclability for Nirich layered cathode materials[J]. Small, 2021, 17(52):e2104282.
[21] Ding J F, Zhang Y T, Xu R, et al. Review on lithium metal anodes towards high energy density batteries[J]. Green Energy & Environment, 2023, 8(6):1509-1530.
[22] Wang Q S, Mao B B, Stoliarov S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73:95-131.
[23] 郑开汇. 阻燃电解液的燃烧特性研究[D]. 太原:中北大学, 2021.
[24] Guo Z X, Yang S G, Zhao W Y, et al. Overdischarge-induced evolution of Cu dendrites and degradation of mechanical properties in lithium-ion batteries[J]. Journal of Energy Chemistry, 2023, 32(3):497-506.
[25] Guo J X, Gao C, Liu H, et al. Inherent thermal-responsive strategies for safe lithium batteries[J]. Journal of Energy Chemistry, 2024, 89:519-534.
[26] Barkholtz H M, Preger Y, Ivanov S, et al. Multi-scale thermal stability study of commercial lithium-ion batteries as a function of cathode chemistry and state-ofcharge[J]. Journal of Power Sources, 2019, 435:226777.
[27] Zhang Y B, Feng J B, Qin J D, et al. Pathways to nextgeneration fire-safe alkali-ion batteries[J]. Advanced Science, 2023, 10(24):e2301056.
[28] Jiang X M, Chen Y J, Meng X K, et al. The impact of electrode with carbon materials on safety performance of lithium-ion batteries:A review[J]. Carbon, 2022, 191:448-470.
[29] Parhizi M, Ahmed M, Jain A. Determination of the core temperature of a Li-ion cell during thermal runaway[J]. Journal of Power Sources, 2017, 370:27-35.
[30] Tan J, Matz J, Dong P, et al. A growing appreciation for the role of LiF in the solid electrolyte interphase[J]. Advanced Energy Materials, 2021, 11(16):2100046.
[31] Liu W, Liu P C, Mitlin D. Review of emerging concepts in sei analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes[J]. Advanced Energy Materials, 2020, 10(43):2002297.
[32] Adenusi H, Chass G A, Passerini S, et al. Lithium batteries and the solid electrolyte interphase (SEI)-Progress and outlook[J]. Advanced Energy Materials, 2023, 13(10):2203307.
[33] 崔灿. 锂离子动力蓄电池安全性的研究与应用[D]. 北京:清华大学, 2014.
[34] 朱磊. 热-电滥用下锂离子电池热失控特性研究[D]. 镇江:江苏大学, 2021.
[35] 朱学慢. 锂电池的热失控研究[D]. 上海:上海海洋大学, 2021.
[36] Lagadec M F, Zahn R, Wood V. Characterization and performance evaluation of lithium-ion battery separators[J]. Nature Energy, 2019, 4:16-25.
[37] 李晨, 刘桂林, 王春宁, 等. 热失控下锂电池内部反应综述[J]. 电源技术, 2020, 44(12):1851-1854.
[38] Wan S, Ma W T, Wang Y T, et al. Electrolytes design for extending the temperature adaptability of lithium-ion batteries:From fundamentals to strategies[J]. Advanced Materials, 2024, 36(21):e2311912.
[39] Gao X, Zhou Y N, Han D, et al. Thermodynamic understanding of Li-dendrite formation[J]. Joule, 2020, 4(9):1864-1879.
[40] Hao F, Verma A, Mukherjee P P. Mechanistic insight into dendrite-SEI interactions for lithium metal electrodes[J]. Journal of Materials Chemistry A, 2018, 6(40):19664-19671.
[41] 田刚领, 李娟, 伍远锞, 等. 锂离子电池安全材料的研究进展[J]. 电池, 2023, 53(3):347-351.
[42] Wang J, Li L G, Hu H M, et al. Toward dendrite-free metallic lithium anodes:From structural design to optimal electrochemical diffusion kinetics[J]. ACS Nano, 2022, 16(11):17729-17760.
[43] Jin S, Deng Y, Chen P Y, et al. Solid-adsorbed polymer-electrolyte interphases for stabilizing metal anodes in aqueous Zn and non-aqueous Li batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(18):e202300823.
[44] Zeng J K, Liu Q T, Jia D Y, et al. A polymer brushbased robust and flexible single-ion conducting artificial SEI film for fast charging lithium metal batteries[J]. Energy Storage Materials, 2021, 41:697-702.
[45] Xie J, Wang J Y, Lee H R, et al. Engineering stable interfaces for three-dimensional lithium metal anodes[J]. Science Advances, 2018, 4(7):eaat5168.
[46] Yang Z, Dang Y, Zhai P, et al. Single-atom reversible lithiophilic sites toward stable lithium anodes[J]. Advanced Energy Materials, 2022, 12(8):2103368.
[47] Chen Z X, Shen H, Zhu Y C, et al. Advanced low-flammable pyrrole ionic liquid electrolytes for high safety lithium-ion batteries[J]. Journal of Energy Storage, 2023, 72:108289.
[48] Liu K, Liu Y Y, Lin D C, et al. Materials for lithiumion battery safety[J]. Science Advances, 2018, 4(6):eaas9820.
[49] Wang L, Chen Z, Liu Y, et al. Safety perceptions of solid-state lithium metal batteries[J]. eTransportation, 2023, 16:100239.
[50] Wu L, Pei F, Cheng D, et al. Flame-retardant polyurethane-based solid-state polymer electrolytes enabled by covalent bonding for lithium metal batteries[J]. Advanced Functional Materials, 2023:2310084.
[51] Zhang W R, Koverga V, Liu S F, et al. Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries[J]. Nature Energy, 2024, 9:386-400.
[52] Wang E, Xiao D, Wu T, et al. Stabilizing oxygen by high-valance element doping for high-performance Li rich layered oxides[J]. Battery Energy, 2023, 2:20220030.
[53] Lu S Q, Guo S J, Qi M Y, et al. Precise surface control of cathode materials for stable lithium-ion batteries[J]. Chemical Communications, 2022, 58(10):1454-1467.
[54] Yang X, Wang C, Yan P, et al. Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering[J]. Advanced Energy Materials, 2022, 12:2200197.
[55] Liu Y, Li C, Li C X, et al. Porous, robust, thermally stable, and flame retardant nanocellulose/polyimide separators for safe lithium-ion batteries[J]. Journal of Materials Chemistry A, 2023, 11(43):23360-23369.
[56] Peng L, Kong X, Li H, et al. A Rational design for a high-safety lithium-ion battery assembled with a heatproof-fireproof bifunctional separator[J]. Advanced Functional Materials, 2021, 31:2008537.
[57] 陈大分. 动力锂离子电池系统热管理研究[D]. 北京:北京交通大学, 2017.
[58] 郭莹莹. 锂离子电池热管理系统冷却方式研究[D]. 焦作:河南理工大学, 2021.
[59] Yang H, Wang Z, Li M, et al. A manifold channel liquid cooling system with low-cost and high temperature uniformity for lithium-ion battery pack thermal management[J]. Thermal Science and Engineering Progress, 2023, 41:101857.
[60] Jing Y G, Zhao Z C, Cao X L, et al. Ultraflexible, costeffective and scalable polymer-based phase change composites via chemical cross-linking for wearable thermal management[J]. Nature Communications, 2023, 14(1):8060.
[61] Wang Y, Peng P, Cao W, et al. Experimental study on a novel compact cooling system for sylindrical lithium-ion battery module[J]. Applied Thermal Engineering, 2020, 180:115772.