In response to clear understanding of reservoir rock-forming and pore evolution characteristics,this study takes the tight sandstone reservoir of the Lower Cretaceous Yingcheng Formation and Shahezi Formation in the Longfengshan Sub-sag of the Changling Fault depression in the Songliao Basin as the research object, and the pore evolution process of the main rockforming phases is quantitatively recovered on the basis of reservoir characteristics and rock-forming phase delineation. The conclusions are as follows. The main rock type of the target formation is rock chip sandstone with low structural maturity and poor sorting and rounding; the typical type of reservoir diagenesis is compaction and cementation, the diagenetic stage is intermediate diagenetic stage B, and the diagenetic coeval sequence is: early compaction - chlorite cementation - turbidite cementation - early calcareous cementation - phase I dissolution - siliceous cementation - phase II dissolution - late calcareous cementation; the typical diagenetic phases include chlorite cementation diagenetic phase, turbidite cementation diagenetic phase and acidic dissolution diagenetic phase, and each diagenetic phase has undergone the process of compaction and cementation to reduce pore size, and two stages of dissolution to increase pore size; the pore evolution characteristics and the understanding of tight gas reservoir formation period are integrated, and two reservoir evolution models are established, namely the first tight and then reservoir formation model and the tight unresolved reservoir model.
[1] Holditch S A. Tight gas sands[J]. Journal of Petroleum Technology, 2006, 58(5): 86-93.
[2] Nordeng S H. The Bakken petroleum system: An example of acontinuous petroleum accumulation[J]. North Dakota Department of Mineral Resources Newsletter, 2009, 36(1): 21-24.
[3] U W R, Bao J W, Hu B, et al. Trend and progress in global oil and gas exploration[J]. Petroleum Exploration and Development, 2013, 40(4): 409-413.
[4] Zou C N, Zhang G Y, Tao S Z, et al. Geological fea tures, major discoveries and unconventional petroleum geology in the global petroleum exploration[J]. Petroleum Exploration and Development, 2010, 37(2): 129-145.
[5] 孙龙德, 邹才能, 贾爱林, 等. 中国致密油气发展特征与方向[J]. 石油勘探与开发, 2019, 46(6): 12.
[6] 李海平, 贾爱林, 何东博, 等. 中国石油的天然气开发技术进展及展望[J]. 天然气工业, 2010, 30(1): 5-8.
[7] 孙龙德, 伍晓林, 周万富, 等. 大庆油田化学驱提高采收率技术[J]. 石油勘探与开发, 2018, 45(4): 636-645.
[8] 杨涛, 张国生, 梁坤, 等. 全球致密气勘探开发进展及中国发展趋势预测[J]. 中国工程科学, 2012, 14(6): 64-68.
[9] 邹才能, 翟光明, 张光亚, 等. 全球常规-非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发, 2015, 42(1): 13-25.
[10] 胡素云, 朱如凯, 吴松涛, 等. 中国陆相致密油效益勘探开发[J]. 石油勘探与开发, 2018, 45(4): 737-748.
[11] 秦都, 黄桂雄, 李瑞磊, 等. 松辽盆地南部断陷层碎屑岩天然气成藏主控因素分析——以长岭断陷龙凤山次凹为例[J]. 中国石油勘探, 2016, 21(3): 52-61.
[12] 袁静, 王尉, 朱建峰, 等. 松辽盆地长岭断陷龙凤山次凹下白垩统营城组物源与沉积相研究[J]. 天然气地球科学, 2017, 28(1): 93-105.
[13] 唐颖. 松辽盆地伏龙泉断陷源—汇体系特征与有利储集砂体预测[D]. 北京: 中国地质大学(北京), 2017.
[14] 张玮, 李洪革, 李明杰. 松辽盆地南部长岭断陷区深层构造特征与天然气聚集[J]. 石油与天然气地质, 2008(1): 120-127.
[15] 陈娟, 张庆龙, 王良书, 等. 松辽盆地长岭断陷盆地断陷期构造转换及油气地质意义[J]. 地质学报, 2008, 82(8): 1027-1035.
[16] 闫伟鹏, 李建忠, 王立武, 等. 松辽盆地长岭断陷深层天然气资源潜力分析[J]. 现代地质, 2009, 23(5): 902- 907.
[17] 张彦霞, 李海华, 王保华, 等. 松辽盆地长岭断陷深层天然气输导体系研究[J]. 石油实验地质, 2012, 34(6): 582-586.
[18] 左宗鑫, 陆建林, 王苗, 等. 松辽盆地长岭断陷断层特征及其控油气作用[J]. 石油实验地质, 2019, 41(2): 200-206.
[19] 范婕, 蒋有录, 刘景东, 等. 长岭断陷龙凤山地区断裂与油气运聚的关系[J]. 地球科学, 2017, 42(10): 1817- 1829.
[20] 郭巍, 于文祥, 刘招君. 松辽盆地南部埋藏史[J]. 吉林大学学报(地球科学版), 2009, 39(3): 353-360.
[21] 李浩, 陆建林, 左宗鑫, 等. 长岭断陷南部断陷层湖相优质烃源岩发育控制因素[J]. 石油与天然气地质, 2015, 36(2): 209-218.
[22] 刘曦翔, 张哨楠, 杨鹏, 等. 龙凤山地区营城组深层优质储层形成机理[J].岩性油气藏, 2017, 29(2): 117-124.
[23] 程日辉, 任延广, 沈艳杰, 等. 松辽盆地营城组火山岩冷却单元及地层结构分析[J].吉林大学学报(地球科学版), 2012, 42(5): 1338-1347.
[24] 朱平, 黄思静, 李德敏, 等. 粘土矿物绿泥石对碎屑储集岩孔隙的保护[J]. 成都理工大学学报(自然科学版), 2004(2): 153-156.
[25] Laura J C, Robert L, Matthew W T. Silicilastic diagenesis and fluid flow: Concepts and applications. Tulsa, Oklahoma[J]. Society for sedimentary Geology, 1996, 4: 1-27.
[26] Scherer M, 侯瑞云. 影响砂岩孔隙度的参数——一种预测砂岩孔隙度的模式[J]. 地质科学译丛, 1988(2): 74-79.
[27] 张向津. 大牛地气田石炭—二叠系致密砂岩成岩演化定量分析[D]. 青岛: 中国石油大学(华东), 2014.
[28] 王艳忠, 操应长, 葸克来, 等. 碎屑岩储层地质历史时期孔隙度演化恢复方法——以济阳坳陷东营凹陷沙河街组四段上亚段为例[J]. 石油学报, 2013, 34(6): 1100- 1111.
[29] 姜振学, 庞雄奇, 李峰, 等. 致密砂岩气藏成藏机理与类型划分[C]//中国矿物岩石地球化学学会. 中国矿物岩石地球化学学会第14届学术年会论文摘要专辑. 北京:《高校地质学报》编辑部, 2013: 1.
[30] Wang W, Jiang Y L, Yuan J, et al. Characteristics and migration mechanisms of natural gas in tight sandstone reservoirs in the Longfengshan sag, Songliao Basin, China[J]. Journal of Petroleum Science and Engineering, 2019, 174: 1-12.