Exclusive: Intelligent Development of Marine Engineering Equipment

Overview on research progress of typical intelligent equipment in marine engineering

  • YAN Jun ,
  • SU Qi ,
  • XU Qi ,
  • YANG Jianye ,
  • CHEN Jinlong ,
  • LU Hailong ,
  • WU Wenhua
Expand
  • 1. State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, China;
    2. Ningbo Institube of Dalian University of Technology, Ningbo 315016, China

Received date: 2023-02-01

  Revised date: 2024-01-03

  Online published: 2024-08-01

Abstract

In the context of promoting green and low-carbon energy development and structural transformation, traditional energy technology urgently requires innovation and enhanced capabilities. Therefore, intelligent technology for marine engineering equipment is rapidly advancing but faces challenges such as weak independent innovation capabilities, lacking some critical core technologies, and insufficient supporting capacities for key components. To drive the intelligent development of marine engineering equipment and accelerate the construction of intelligent marine engineering equipment, this paper reviews the practical innovations of key equipment in the development of marine oil and gas resources. This includes three research areas: Marine flexible risers and umbilical, marine floating structures, and monitoring technology for marine structures. Firstly, by systematically expounding the current development status of marine flexible riser and umbilical, intelligent algorithms in structural analysis and design are summarized. Secondly, the development progress of intelligent marine floating structures is introduced and the limitations of current analysis technology and future research directions are highlighted. Lastly, the application research of intelligent monitoring technology for marine equipment structures is reviewed and monitoring technology as a crucial pathway for intelligent perception is emphasized. With the rapid advancement of information technology, traditional automation methods are inadequate to address new challenges in the marine equipment maintenance process. The article suggests that comprehensive application of various intelligent technologies such as full perception, real-time interconnection, analysisbased decision-making, autonomous learning, dynamic prediction, and collaborative control in marine engineering equipment should be an inevitable trend for future development.

Cite this article

YAN Jun , SU Qi , XU Qi , YANG Jianye , CHEN Jinlong , LU Hailong , WU Wenhua . Overview on research progress of typical intelligent equipment in marine engineering[J]. Science & Technology Review, 2024 , 42(13) : 16 -26 . DOI: 10.3981/j.issn.1000-7857.2024.03.01195

References

[1] Larsen C M, Hanson T. Optimization of catenary risers[J]. Journal of Offshore Mechanics and Arctic Engineering, 1999, 121(2):90-94.
[2] Vieira L T, de S L P de Lima B, Evsukoff A G, et al. Ap-plication of genetic algorithms to the synthesis of riser configurations[C]//Proceedings of ASME 200322nd Inter-national Conference on Offshore Mechanics and Arctic Engineering. Cancun:ASME, 2009:391-396.
[3] Yang H Z, Jiang R H, Li H J. Optimization design of deepwater steel catenary risers using genetic algorithm[M]//Computational Structural Engineering. Dordrecht:Springer Netherlands, 2009:901-908.
[4] de Souza Leite Pires de Lima B, Pinheiro J B, Francisco F E N. A hybrid fuzzy/genetic algorithm for the design of offshore oil production risers[J]. International Journal for Numerical Methods in Engineering, 2005, 64(11):1459-1482.
[5] Tanaka R L, De A M C. A genetic algorithm approach to steel riser optimization[C]. 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany:2006.
[6] Rentschler M U T, Adam F, Chainho P. Design optimiza-tion of dynamic inter-array cable systems for floating off-shore wind turbines[J]. Renewable and Sustainable Ener-gy Reviews, 2019, 111:622-635.
[7] Yang H Z, Zheng W Q. Metamodel approach for reliabili-ty-based design optimization of a steel catenary riser[J]. Journal of Marine Science and Technology, 2011, 16(2):202-213.
[8] Lal M, Sebastian A, Rana Y. Steel lazy wave riser optimi-zation using artificial neural networks and genetic algo-rithm[C]//Proceedings of ASME 202140th International Conference on Ocean, Offshore and Arctic Engineering. Online:ASME 2021.
[9] Elsas J H, Casaprima N A G, Cardoso P H S, et al. Bayesian optimization of riser configurations[J]. Ocean En-gineering, 2021, 236:109402.
[10] 张起.深度学习驱动的脐带缆线型优化设计方法[D].大连:大连理工大学, 2021.
[11] Yan J, Su Q, Li R D, et al. Optimization design method of the umbilical cable global configuration based on rep-resentative fatigue conditions[J]. IEEE Journal of Ocean-ic Engineering, 2023, 48(1):188-198.
[12] Bhowmik S, Noiray G, Naik H. Riser design automation with machine learning[C]//Proceedings of Day 4 Thu, No-vember 14, 2019. Abu Dhabi:SPE, 2019:SPE-M7219-MS.
[13] Petroleum and natural gas industries:Design and opera-tion of subsea production systems-Part 5:Subsea umbili-cals:NF M87-208-5-2013. ISO 13628-5[S]. Switzer-land:International Organization for Standardization, 2013.
[14] Yang Z X, Yin X, Yan J, et al. Study on the optimiza-tion algorithm of the cross-sectional layout of an umbili-cal based on the layering strategy[J]. Ocean Engineer-ing, 2021, 232:109120.
[15] Yin X, Yang Z X, Yan J, et al. Study on the automatic optimization design of the cross-sectional layout of an umbilical with layers based on the GA-GLM[J]. Marine Structures, 2023, 88:103363.
[16] Wang L F, Shi D Y, Zhang B Y, et al. Accurate and re-al-time prediction of umbilical component layout optimi-zation based on convolutional neural network[J]. Ocean Engineering, 2023, 282:115034.
[17] Yan J, Yang Z X, Zhao P P, et al. Reliability optimiza-tion design of the steel tube umbilical cross section based on particle swarm algorithm[C]//Proceedings of ASME 201736th International Conference on Ocean, Offshore and Arctic Engineering. Trondheim:ASME, 2017.
[18] Monsalve-Giraldo J S, Cortina J P R, de Sousa F J M, et al. Hybrid Parabolic Interpolation-Artificial Neural Network Method (HPI-ANNM) for long-term extreme re-sponse estimation of steel risers[J]. Applied Ocean Re-search, 2018, 76:221-234.
[19] Zhao Y L, Dong S, Jiang F Y. Reliability analysis of mooring lines for floating structures using ANN-BN in-ference[J]. Proceedings of the Institution of Mechanical Engineers, Part M:Journal of Engineering for the Mari-time Environment, 2021, 235(1):236-254.
[20] Mao Y X, Wang T Q, Duan M L. A DNN-based ap-proach to predict dynamic mooring tensions for semisubmersible platform under a mooring line failure condi-tion[J]. Ocean Engineering, 2022, 266:112767.
[21] Sivaprasad H, Lekkala M R, Latheef M, et al. Fatigue damage prediction of top tensioned riser subjected to vortex-induced vibrations using artificial neural networks[J]. Ocean Engineering, 2023, 268:113393.
[22] Guarize R, Matos N A F, Sagrilo L V S, et al. Neural networks in the dynamic response analysis of slender marine structures[J]. Applied Ocean Research, 2007, 29(4):191-198.
[23] de Pina A C, de Pina A A, Albrecht C H, et al. ANNbased surrogate models for the analysis of mooring lines and risers[J]. Applied Ocean Research, 2013, 41:76-86.
[24] de Pina A C, Albrecht C H, de Lima B S L P, et al. Wavelet network meta-models for the analysis of slen-der offshore structures[J]. Engineering Structures, 2014, 68:71-84.
[25] Yang Y, Peng T, Liao S J. Predicting future mooring line tension of floating structure by machine learning[J]. Ocean Engineering, 2023, 269:113470.
[26] da Silva V R M, Sagrilo L V S, de Araujo B S. Applied deep learning for slender marine structure dynamic anal-ysis[J]. Journal of Offshore Mechanics and Arctic Engi-neering, 2022, 144(2):021701.
[27] Yan J, Zhang Y Y, Su Q, et al. Time series prediction based on LSTM neural network for top tension response of umbilical cables[J]. Marine Structures, 2023, 91:103448.
[28] Xie Y J, Tang H S, Low Y M. Deep gated recurrent unit networks for time-domain long-term fatigue analysis of mooring lines considering wave directionality[J]. Ocean Engineering, 2023, 284:115244.
[29] Ma G, Jin C L, Wang H W, et al. Study on dynamic ten-sion estimation for the underwater soft yoke mooring sys-tem with LSTM-AM neural network[J]. Ocean Engineer-ing, 2023, 267:113287.
[30] Rezaniaiee Aqdam H, Ettefagh M M, Hassannejad R. Health monitoring of mooring lines in floating structures using artificial neural networks[J]. Ocean Engineering, 2018, 164:284-297.
[31] Sacie M, Santos M, López R, et al. Use of state-of-art machine learning technologies for forecasting offshore wind speed, wave and misalignment to improve wind tur-bine performance[J]. Journal of Marine Science and En-gineering, 2022, 10(7):938.
[32] Tay Z Y. Artificial neural network framework for predic-tion of hydroelastic response of very large floating struc-ture[J]. Applied Ocean Research, 2023, 139:103701.
[33] Saghi H, Mikkola T, Hirdaris S. A machine learning method for the evaluation of hydrodynamic performance of floating breakwaters in waves[J]. Ships and Offshore Structures, 2022, 17(7):1447-1461.
[34] 王程,张露,金东东,等.基于高通量卫星的深远海网箱智能化养殖监测系统[J].卫星应用, 2022(6):61-66.
[35] 王奕.基于雷达通信和AIS的海洋渔业智能化监管策略研究[J].中国新通信, 2023, 25(13):12-14.
[36] 邓燕,刘志芳,宫俭纯,等.海洋石油平台智能化转型升级关键技术分析[J].化工自动化及仪表, 2020, 47(4):338-340, 348.
[37] 刘红霞.深海海洋平台控制系统智能化研究[J].海洋工程装备与技术, 2019, 6(增刊1):404-408.
[38] Zhang J C, Zhao X W, Wei X. Reinforcement learningbased structural control of floating wind turbines[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2022, 52(3):1603-1613.
[39] 楼丹平,杨春华. LNG船技术发展趋势[J].船舶, 2023, 34(4):19-27.
[40] 中国制造2025-能源装备实施方案[J].中国产经, 2016(6):66-93.
[41] Peters D J H, Zimmer R A, Hein N W Jr, et al. Weight control, performance monitoring, and In-situ inspection of the TLWP[C]//Proceedings of All Days. Houston:OTC, 1990:OTC-6363-MS.
[42] 冯加果,谢彬,谢文会,等.深水浮式平台监测系统研制及应用[J].舰船科学技术, 2019, 41(5):118-121.
[43] 武文华,唐达,岳前进,等.海洋平台结构原型监测及其现场应用[C]//中国海洋工程学会第十六届中国海洋(岸)工程学术讨论会论文集(上册).南京:中国海洋学会海洋工程分会, 2013:8.
[44] Hu Z, Li X, Li J, et al. Comparative study on a jacket launching operation in South China Sea[J]. Ocean Engi-neering, 2016, 111:335-347.
[45] 何林,欧进萍.海洋平台结构损伤监测的传感器总线系统设计[J].计算机应用研究, 2006, 23(9):136-138, 159.
[46] 聂杰文.基于EMD-HHT的海洋平台结构损伤检测技术研究[D].青岛:中国海洋大学, 2014.
[47] 杨华庭.近十年来的海洋灾害与减灾[J].海洋预报, 2002, 19(1):2-8.
[48] 秦洪德.船舶运动与波浪载荷计算的非线性方法研究[D].哈尔滨:哈尔滨工程大学, 2003.
[49] 单忠伟.海流测量技术综述[J].声学与电子工程, 2011(1):1-5.
[50] Cook H H, Dopjera D E, Thethi R, et al. Riser integrity management for deepwater developments[C]//Proceed-ings of Offshore Technology Conference. Offshore Tech-nology Conference. Houston:OTC, 2006:OTC-17891-MS.
[51] Chen W, Xiong C B, Yu L N, et al. Dynamic monitoring of an offshore jacket platform based on RTK-GNSS measurement by CF-CEEMDAN method[J]. Applied Ocean Research, 2021, 115:102844.
[52] 杜宇,武文华,王延林,等.基于自容式技术的系泊缆水下监测方法[J].哈尔滨工程大学学报, 2016, 37(8):1003-1008, 1014.
[53] 韩旭亮,王世圣,谢文会,等.基于光纤传感技术的结构应力监测试验研究[J].石油矿场机械, 2021, 50(5):26-31.
[54] Ren L, Li H N, Zhou J, et al. Development of health monitoring system for ocean offshore platform with fiber bragg grating sensors[J]. International Offshore and Polar Engineering Conference, Seoul, Korea, 2005:424-428.
[55] Duan Z D, Ou J P, Zhou Z, et al. Smart sensors and inte-grated shm system for offshore structures[M]//Sensing Is-sues in Civil Structural Health Monitoring. Berlin/Hei-delberg:Springer-Verlag, 2005:269-278.
[56] Achenbach J D. Quantitative nondestructive evaluation[J]. International Journal of Solids and Structures, 2000, 37(1/2):13-27.
[57] Aindow A M, Dewhurst R J, Palmer S B, et al. Laserbased non-destructive testing techniques for the ultra-sonic characterization of subsurface flaws[J]. NDT Inter-national, 1984, 17(6):329-335.
[58] Alers G A, Burns L R. EMAT designs for special appli-cations[J]. Materials Evaluation, 1987, 45(10):1184-1189.
[59] Grandia W A, Fortunko C M. NDE applications of aircoupled ultrasonic transducers[C]//Proceedings of IEEE Ultrasonics Symposium. NJ:IEEE, 1995, 1:697-709.
[60] 崔继鹏,陈启卫,张允宁.海洋石油平台多种通信方式的应用[J].中国石油和化工标准与质量, 2021, 41(4):135-137, 140.
[61] 向景.海上平台通信系统中多网融合的实践[J].中国新技术新产品, 2019(24):27-28.
[62] 姚骥,武文华,徐海博,等.基于图像化卷积的半潜式平台响应预测[J].船舶力学, 2023, 27(5):617-626.
[63] 姚骥,武文华,于思源.基于卷积网络的浮式平台人员舒适度评价[J].哈尔滨工程大学学报, 2021, 42(1):82-88.
[64] Yu S Y, Wu W H, Xie B, et al. Extreme value predic-tion of current profiles in the South China Sea based on EOFs and the ACER method[J]. Applied Ocean Re-search, 2020, 105:102408.
[65] Yu S Y, Wu W H, Naess A. Current profile extreme pre-diction in the South China Sea based on the EOF-AC-ER method, by considering current directions[J]. Interna-tional Journal of Offshore and Polar Engineering, 2021, 31(3):275-282.
[66] Yu S Y, Wu W H, Naess A. Extreme value prediction with modified Enhanced Monte Carlo method based on tail index correction[J]. Journal of Sea Research, 2023, 192:102354.
[67] 张延涛,吕柏呈,武文华,等.基于现场实测的渤海风速特性研究[J].海洋工程, 2020, 38(1):147-153.
[68] Yao J, Wu W H. Wave height forecast method with multi-step training set extension LSTM neural network[J]. Ocean Engineering, 2022, 263:112432.
[69] Yao J, Wu W H. Extreme motion prediction and earlywarning assessment of semisubmersible platform based on deep learning method[J]. International Journal of Off-shore and Polar Engineering, 2021, 31(3):293-301.
[70] Yao J, Wu W H, Li S. Anomaly detection model of moor-ing system based on LSTM PCA method[J]. Ocean Engi-neering, 2022, 254:111350.
[71] Li S, Wu W H, Yao W A. Bayesian based updating of hull and mooring structure parameters of semi-submers-ible platforms using monitoring data[J]. Ocean Engineer-ing, 2023, 272:113865.
[72] Lyu B C, Guo C C, Wu W H, et al. Hinge joint damage identification method of soft yoke mooring system based on multibody dynamic modeling and structural monitor-ing data[J]. Marine Structures, 2020, 74:102808.
[73] Lyu B C, Wu W H. Dynamic characteristics analysis of an in-service SYMS based on long-term field monitoring[J]. Ocean Engineering, 2022, 265:112648.
Outlines

/