This paper reviews underwater archaeological exploration technologies outside of China, including traditional marine geophysical exploration technology based on acoustic, optical and electrical methods, unmanned underwater archaeological exploration technology, deep-sea archaeological exploration technology, remote sensing exploration technology and high-precision underwater exploration technology. Additionally, it introduces seven practical cases of underwater archaeological exploration technologies abroad. Five trends in the development of underwater archaeological exploration technology abroad are put forward: first, multi-source exploration of underwater archaeology; second, the increasing significance of deep-sea research in this field; third, integration with big data and artificial intelligence technology; fourth, monitoring and virtual restoration of underwater sites; fifth, international cooperation and knowledge sharing.
LI Bin
. The trends of underwater archaeological exploration technology outside of China[J]. Science & Technology Review, 2024
, 42(14)
: 73
-80
.
DOI: 10.3981/j.issn.1000-7857.2023.07.01100
[1] 肖付民, 刘雁春, 暴景阳, 等. 海道测量学概论[M]. 北京: 测绘出版社, 2006.
[2] 国家文物局考古研究中心. 水下考古学概论[M]. 北京: 科学出版社, 2023.
[3] George F B. A brief history of underwater detection and survey techniques used in underwater archeology[C]//The Appliacation of Recent Advances in Underwater Detection and Survey Techniques to Underwater Archeology. Bodrum, Turkey: Uluburun Publishing, 2004: 9-16.
[4] Green J. Maritime archaeology: A technical handbook[M]. London: Elsevier Academic, 2004.
[5] Johnston P, Poole M. Marine surveillance capabilities of the AutoNaut wave-propelled unmanned surface vessel (USV) [C]//Proceedings of OCEANS 2017-Aberdeen. Piscataway, NJ: IEEE, 2017.
[6] New Atlas. DARPA hands autonomous sub-hunter prototype over to the US navy[EB/OL]. (2018-02-05) [2024-03-01]. http://newatlas.com/darpa-actuv-us-navy/53247.
[7] 丁见祥. 大海寻踪: 深海考古的发生与发展[J]. 中国文化遗产, 2019(5): 4-12.
[8] Woods Hole Oceanographic Institution. History of Alvin [EB/OL]. [2024-03-05]. https://www.whoi.edu/what-wedo/explore/underwater-vehicles/hov-alvin/history-of-alvin.
[9] JAMSTEC. Deep submergence research vehicle shinkai 6500[EB/OL]. [2024-03-05]. https://www.jamstec.go.jp/e/about/equipment/ships/shinkai6500.html.
[10] Ker Than. James cameron reaches deepest point[EB/OL]. [2024-03-05]. https://www.nationalgeographic.com/adventure/article/120325-james-cameron-mariana-trenchchallenger-deep-deepest-science-sub.
[11] Jollivet D, Desbruyères D, Copley J. Nautile and remotely operated vehicles provide access to deep-sea hydrothermal vents[J]. Oceanography, 2011, 24(1): 30-38.
[12] Desset S, Damus R, Morash J. Use of GIBs in AUVs for underwater archaeology[J]. Sea Technology, 2003, 44(12): 22-27.
[13] Allotta B, Costanzi R, Ridolfi A, et al. The ARROWS project: Adapting and developing robotics technologies for underwater archaeology[J]. IFAC-PapersOnLine, 2015, 48(2): 194-199.
[14] McCarthy J, Wiseman C, Woo K, et al. Beneath the top end: A regional assessment of submerged archaeological potential in the Northern Territory, Australia[J]. Australian Archaeology, 2022, 88(1): 65-83.
[15] Menna F, Agrafiotis P, Georgopoulos A. State of the art and applications in archaeological underwater 3D recording and mapping[J]. Journal of Cultural Heritage, 2018, 33: 231-248.
[16] Chen J, Wang H, Ma K, et al. 3D underwater archaeological survey using acoustic and optical imaging approaches[J]. Journal of Cultural Heritage, 2017, 26: 151-158.
[17] Ioannidis K P, Moraiti M, Skarlatos S. Acoustic and optical combined techniques for 3D documentation of underwater archaeological sites[J]. Journal of Cultural Heritage, 2014, 15(6): 690-696.
[18] Jurkovic I, Mihovilić D. The discovery of 16th-ad 17thcentury shipwrecks in Rijeka, Croatia: New insights into global maritime trade[J]. International Journal of Nautical Archaeology, 2016, 45(2): 347-360.
[19] Taher M, Mourabit T, Etebaai I, et al. Detection and mapping of shipwrecks in Al-hoceima coastal using remote sensing[J]. Ecological Engineering & Environmental Technology, 2022, 23(5): 218-223.
[20] Stathis C S. The 373 B. C. Helike (Gulf of Corinth, Greece) earthquake and tsunami, revisited[J]. Journal of Field Archaeology, 2022, 93(1): 444-457.
[21] Pydyn A, Popek M, Kubacka M, et al. Exploration and reconstruction of a medieval harbour using hydroacoustics, 3-D shallow seismic and underwater photogrammetry: A case study from Puck, southern Baltic Sea[J]. Archaeological Prospection, 2021, 28(4): 527-542.
[22] Tine Missiaen. 2D and 3D acoustic investigation of a submerged archaeological site near Ostend, Belgium. 7th. Workshop "Seabed Acoustics", November 19/20, 2015 in Rostock-Warnemünde, German[EB/OL]. [2024-03-01]. https://www.innomar.com/applications/user-workshop/seabed-acoustics2015#Conference%20Presentations%20and%20Posters.
[23] Missiaen T, Evangelinos D, Claerhout C, et al. Archaeological prospection of the nearshore and intertidal area using ultra-high resolution marine acoustic techniques: Results from a test study on the Belgian coast at Ostend-Raversijde[J]. Geoarchaeology, 2018, 33(3): 386-400.
[24] Pacheco-Ruiz R, Adams J, Pedrotti F, et al. Deep sea archaeological survey in the Black Sea-Robotic documentation of 2, 500 years of human seafaring[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 152: 103087.
[25] Traviglia A, Cottica D. Remote sensing applications and archaeological research in the Northern Lagoon of Venice: The case of the lost settlement of Constanciacus[J]. Journal of Archaeological Science, 2011, 38(9): 2040-2050.
[26] 蒂斯·马尔拉维德, 乌吕克·格林, 芭芭拉·埃格. 水下文化遗产行动手册[M]. 国家文物局水下文化遗产保护中心, 译. 北京: 文物出版社, 2013.
[27] 宋建忠. 深海藏珍——发现南海西北陆坡一号、二号沉船[N]. 光明日报, 2023-10-22(12).