In the 21st century, the application of hydrogen energy and development of hydrogen energy industry have received extensive attention from the society. From the history of the Earth formation and geophysical data, the Earth's interior is a hydrogen energy reservoir. Data from Continental Science drilling suggest that large earthquakes may generate seismic waves that surround the globe and move fracture zones in the Earth's crust and mantle to release gas from the Earth's interior. After earthquakes, the Earth can release gases such as hydrogen, helium and methane, which will rush up through the mantle fracture zones to the upper crust. If there are rock layers with low permeability in the upper crust covering the upwelling gas, they may become a hydrogen energy reservoir in the deep crystalline rock. In China, there may be such deep hydrogen energy storage in the eastern Qinghai-Tibet Plateau, which deserves further study.
[1] Mitrofanov F P, Yakovlev Y N, Ikorsky S V, et al. A change in composition of rocks, mineral phases and trapped gases in the kola super-deep borehole(SD-3) section of the Archean complex with depth[M]//Fuchs K, Kozlovsky Y A, Krivtsov A I, et al. Super-deep continental drilling and deep geophysical sounding. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990: 353-363.
[2] Faber E, Gerling P, Dumke I. Gaseous hydrocarbons of unknown origin found while drilling[J]. Organic Geochemistry, 1988, 13(4/5/6): 875-879.
[3] Faber E. Origin of hydrocarbon gases in the pump-test of the KTB pilot well[J]. Scientific Drilling, 1995, 5: 123-128.
[4] Möller P, Weise S M, Althaus E, et al. Paleofluids and Recent fluids in the upper continental crust: Results from the German Continental Deep Drilling Program (KTB)[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B8): 18233-18254.
[5] 杨文采. 全球流体通道网[J]. 地球物理学报, 1998, 41(5): 621-633.
[6] 杨文采, 许志琴. 中国大陆科学钻探孔区深源气通道的地震解释[M]//陈运泰, 滕吉文, 阚荣举, 等. 中国大陆地震学与地球内部物理学研究进展. 北京: 地震出版社, 2004: 64-73.
[7] 罗立强, 孙青, 詹秀春. 中国大陆科学钻探主孔0~2000米流体剖面及流体地球化学研究[J]. 岩石学报, 2004, 20(1): 185-191.
[8] 罗立强, 王健, 李松, 等. 中国大陆科学钻探现场分析与地下流体异常识别[J]. 岩矿测试, 2004, 23(2): 81-86.
[9] 孙青, 罗立强, 李圣强. 中国大陆科学钻探主孔0~2000米N、Ar和He流体地球化学研究[J]. 岩石学报, 2004, 20(1): 179-184.
[10] 杨文采, 张春贺, 朱光明. 标定大陆科学钻探孔区地震反射体[J]. 地球物理学报, 2002, 45(3): 370-384.
[11] 杨文采. 大陆科学钻探与中国大陆科学钻探工程[J]. 岩石学报, 2002, 54(2): 22-25.
[12] 杨文采, 杨午阳, 金振民, 等. 苏鲁超高压变质带岩石圈的地震组构[J]. 中国科学: D辑, 2004, 34(4): 307-319.
[13] 杨文采, 张春贺, 黄秋平, 等. 线形区域的主辅线反射地震调查方法[J]. 地球物理学报, 2005, 48(6): 1325-1335.
[14] 杨文采, 刘光林, 杨锴, 等. 中国大陆科学钻探孔区全观式三维地震采集[J]. 地球物理学报, 2006, 49(3): 735-744.
[15] 杨文采, 杨午阳, 程振炎. 中国大陆科学钻探孔区地震反射的标定[J]. 地球物理学报, 2006, 49(6): 1682-1692.
[16] 杨文采, 许志琴, 于常青. 上地壳副片麻岩的反射属性[J]. 中国科学: D辑, 2007, 37(11): 1425-1432.
[17] 杨文采, 金振民, 于常青. 结晶岩中天然气异常的地震响应[J]. 中国科学: D辑, 2008(9): 1057-1067.
[18] Zeng X Z, Yang W C. Impact of post-earthquake seismic waves on the terrestrial environment[J]. Applied Sciences, 2021, 11(14): 6606.
[19] Condie K C. Mantle plumes and their record in earth history[M]. New York: Cambridge University Press, 2001.
[20] Mégnin C, Romanowicz B. The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and higher-mode waveforms[J]. Geophysical Journal International, 2000, 143(3): 709-728.
[21] 杨文采, 于常青. 从亚洲S波波速结构看地幔流体运动特征[J]. 地质学报, 2011, 85(9): 1399-1408.
[22] Mavko G, Mukerji T, Dvorkin J. The rock physics handbook[M]. Cambridge, UK: Cambridge University Press, 2009.
[23] 杨文采, 张学民, 于常青. 华北东部上地幔破裂带[J].地质学报, 2007, 81(10): 1305-1313.
[24] 杨文采, 瞿辰, 任浩然, 等. 青藏高原地壳地震纵波速度的层析成像[J]. 地质论评, 2019, 65(1): 2-14.
[25] 杨文采, 曾祥芝. 认知地球物质运动的大陆动力学方法[J]. 地质论评, 2020, 66(1): 1-12.
[26] 杨文采, 刘晓宇, 陈召曦, 等. 从高分辨率地震层析成像看青藏高原软流圈的物质运动[J]. 地球科学, 2022, 47(10): 3491-3500.