Exclusive: Green Hydrogen Energy Research and Development

Research progress on slush hydrogen technology

  • CHEN Shujun ,
  • WANG Kecheng ,
  • FU Yue ,
  • ZHANG Lin
Expand
  • 1. College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China;
    2. Qingdao Engineering Research Center of Efficient and Clean Utilization of Fossil energy, Qingdao 266580, China;
    3. College of New Energy, China University of Petroleum (East China), Qingdao 266580, China

Received date: 2024-07-04

  Revised date: 2024-07-17

  Online published: 2024-08-28

Abstract

Slush hydrogen, characterized by its commendable energy density and superior rheological properties at low temperatures, is considered a pivotal fuel for future rocket propulsion and a coolant in neutron sources. However, the complex mechanisms of solid-liquid two-phase flow and the limitations inherent in current preparation technologies curtail its broader application within the field. This review delineates the development trajectory of slush hydrogen research and sums up pivotal discussions on its thermophysical properties, methodologies for preparation and measurement, alongside flow and heat transfer dynamics. Comparative analyses of various preparation methodologies elucidate their underlying principles, merits, and demerits. Furthermore, the paper encapsulates the challenges of pipeline pressure drops and heat transfer mechanisms during transit, with a concentrated examination of issues such as sedimentation stratification and thermal leakage oscillations encountered in the transportation of slush hydrogen. Finally, prospective trends in slush hydrogen technology are addressed with an aim to augment its integration into aerospace applications.

Cite this article

CHEN Shujun , WANG Kecheng , FU Yue , ZHANG Lin . Research progress on slush hydrogen technology[J]. Science & Technology Review, 2024 , 42(15) : 49 -57 . DOI: 10.3981/j.issn.1000-7857.2024.07.00780

References

[1] 涂云川, 魏子栋.“双碳”愿景下的能源技术变革[J]. 科技导报, 2023, 41(19): 142-148.
[2] Carney R R. "slush hydrogen" production and handling as a fuel for space projects[M]//Advances in Cryogenic Engineering. Boston, MA: Springer US, 1964: 529-536.
[3] Notardonato J, Masters P A. High density propellant for single stage to orbit vehicles[C]//JANNAF Propulsion Meeting. Atlanta: Legacy CDMS, 1976.
[4] Hardy T, Whalen M. Slush hydrogen propellant production, transfer, and expulsion studies at the NASA K-Site Facility[C]//Proceedings of the Conference on Advanced SEI Technologies. Reston, Virigina: AIAA, 1991.
[5] Fazah M. STS propellant densification feasibility study data book[R]. Alabama: Legacy CDMS, 1994.
[6] Sindt C. Slush hydrogen fluid characterization and instrumentation[R]. Colorado: US Government Printing Office, 1969.
[7] Matsuo K. Fundamental study of pipe flow and heat transfer characteristics of slush nitrogen[C]//Proceedings of AIP Conference Proceedings. Keystone, Colorado: American Institute of Physics, 2006.
[8] Takakoshi T. PIV measurement of slush nitrogen flow in a pipe[C]//Proceedings of AIP Conference Proceedings. AIP, 2006: 1025-1032.
[9] Ohira K. Pressure drop reduction phenomenon of slush nitrogen flow in a horizontal pipe[J]. Cryogenics, 2011, 51(7): 389-396.
[10] Ohira K, Okuyama J, Nakagomi K, et al. Pressure drop of slush nitrogen flow in converging-diverging pipes and corrugated pipes[J]. Cryogenics, 2012, 52(12): 771-783.
[11] Ohira K, Kurose K, Okuyama J, et al. Pressure drop reduction and heat transfer deterioration of slush nitrogen in triangular and circular pipe flows[J]. Cryogenics, 2017, 81: 60-75.
[12] Ohira K, Nakagomi K, Takahashi K, et al. Pressuredrop reduction and heat-transfer deterioration of slush nitrogen in square pipe flow[J]. Physics Procedia, 2015, 67: 681-686.
[13] 谢福寿, 夏斯琦, 朱宇豪, 等. 液氢/固氢混合物(氢浆)制备可视化试验研究[J]. 西安交通大学学报, 2022, 56(6): 26-33.
[14] 夏斯琦, 谢福寿, 厉彦忠, 等. 贮箱内浆态低温推进剂沉降特性数值研究[J]. 西安交通大学学报, 2024, 58(1): 146-156.
[15] Xie F S, Sun Q. Comprehensive performance evaluation of densified liquid hydrogen/liquid oxygen as propulsion fuel[J]. Energies, 2022, 15(4): 1365.
[16] Ohira K. Slush hydrogen production, storage, and transportation[M]//Compendium of hydrogen energy. Amsterdam: Elsevier, 2016: 53-90.
[17] Baik J H, T-Raissi A. R&D processes for increasing density of cryogenic propellants at FSEC[J]. Cryogenics, 2004, 44(6/7/8): 451-458.
[18] Das T, Kweon S C, Choi J G, et al. Spin conversion of hydrogen over LaFeO3/Al2O3 catalysts at low temperature: Synthesis, characterization and activity[J]. International Journal of Hydrogen Energy, 2015, 40(1): 383-391.
[19] Das T, Kweon S C, Nah I W, et al. Spin conversion of hydrogen using supported iron catalysts at cryogenic temperature[J]. Cryogenics, 2015, 69: 36-43.
[20] 江芋叶, 张鹏. 浆氢与浆氮技术研究现状[J]. 低温与超导, 2007, 35(3): 205-214.
[21] Collier R S. Thermally induced oscillations in cryogenic systems[R]. Colorado: National Aeronautics and Space Administration, 1972.
[22] Ohira K. Development of density and mass flow rate measurement technologies for slush hydrogen[J]. Cryogenics, 2004, 44(1): 59-68.
[23] Park Y M. Literature research on the production, loading, flow, and heat transfer of slush hydrogen[J]. International Journal of Hydrogen Energy, 2010, 35(23): 12993-13003.
[24] Ishimoto J. Basic study on two-phase flow characteristics of slush nitrogen in a pipe[C]//Proceedings of AIP Conference Proceedings. AIP, 2004: 1099-1106.
[25] Waynert J. Production of slush hydrogen using magnetic refrigeration[R]. Colorado: Advances in Cryogenic Engineering, 1989.
[26] Kawamura K, Machida A, Ikeuchi M, et al. Apparatus for producing slush nitrogen and method for producing the same: US20060000222[P]. 2006-01-05.
[27] 张春伟, 柴栋栋, 马军强, 等. 基于双喷射雾化的浆氢制备及可视化研究[J]. 低温工程, 2023(2): 40-49.
[28] Lee C, Ryu J, Sohn G, et al. Technical review on liquid/ solid (slush) hydrogen production unit for long-term and bulk storage[J]. Transactions of the Korean Hydrogen and New Energy Society, 2021, 32(6): 565-572.
[29] Swanger A M, Notardonato W U, Fesmire J E, et al. Large scale production of densified hydrogen to the triple point and below[J]. IOP Conference Series: Materials Science and Engineering, 2017, 278: 012013.
[30] 江芋叶. 浆氮的制备及其在水平管内的流动与相变换热特性研究[D]. 上海: 上海交通大学, 2013.
[31] Ellerbruch D A. Microwave methods for cryogenic liquid and slush instrumentation[J]. IEEE Transactions on Instrumentation and Measurement, 1970, 19(4): 412-416.
[32] 陈俊羽, 张乐, 鲍锦, 等. 固液悬浮体系下超声波浓度测量技术进展[J]. 应用声学, 2023, 42(4): 880-888.
[33] 李亦健. 深低温固液两相流管内流动及传热机理研究[D]. 杭州: 浙江大学, 2019.
[34] Govier G W, Aziz K. The flow of complex mixtures in pipes[M]. New York: Van Nostrand Reinhold Co, 1972.
[35] 王武超, 刘慧卿, 东晓虎, 等. 热复合流体对堵剂颗粒沉降特性的影响[J]. 油气地质与采收率, 2023, 30(5): 119-129.
[36] 陈柏文, 拾兵, 王俊杰, 等. 紊动与盐度共同作用的黄河口黏性泥沙絮凝沉降试验研究[J]. 水利水运工程学报, 2024(2): 91-99.
[37] 肖之敏, 熊鹰, 周晓龙. FCC油浆中固体颗粒沉降特性与沉降速度模型[J]. 华东理工大学学报(自然科学版), 2023, 49(3): 368-375.
[38] 郑志, 王树立, 武玉宪. NGH浆体管道的阻力特性及其摩阻损失的计算[J]. 石油规划设计, 2010, 21(2): 30-33.
[39] 张鹏, 石新杰. 浆氢在水平圆管内流动的数值模拟[J]. 化工学报, 2014, 65(增刊2): 38-44.
[40] Jin T, Li Y J, Liang Z B, et al. Numerical prediction of flow characteristics of slush hydrogen in a horizontal pipe[J]. International Journal of Hydrogen Energy, 2017, 42(6): 3778-3789.
[41] Ma F, Zhang P, Shi X J. Hydraulic and heat transfer characteristics of slush hydrogen in a circular pipe under terrestrial and microgravity conditions[J]. International Journal of Heat and Mass Transfer, 2017, 110: 482-495.
[42] 刘翠伟, 崔兆雪, 张家轩, 等. 掺氢天然气管道的分层现象[J]. 中国石油大学学报(自然科学版), 2022, 46(5): 153-161.
Outlines

/