[1] 涂云川, 魏子栋.“双碳”愿景下的能源技术变革[J]. 科技导报, 2023, 41(19): 142-148.
[2] Carney R R. "slush hydrogen" production and handling as a fuel for space projects[M]//Advances in Cryogenic Engineering. Boston, MA: Springer US, 1964: 529-536.
[3] Notardonato J, Masters P A. High density propellant for single stage to orbit vehicles[C]//JANNAF Propulsion Meeting. Atlanta: Legacy CDMS, 1976.
[4] Hardy T, Whalen M. Slush hydrogen propellant production, transfer, and expulsion studies at the NASA K-Site Facility[C]//Proceedings of the Conference on Advanced SEI Technologies. Reston, Virigina: AIAA, 1991.
[5] Fazah M. STS propellant densification feasibility study data book[R]. Alabama: Legacy CDMS, 1994.
[6] Sindt C. Slush hydrogen fluid characterization and instrumentation[R]. Colorado: US Government Printing Office, 1969.
[7] Matsuo K. Fundamental study of pipe flow and heat transfer characteristics of slush nitrogen[C]//Proceedings of AIP Conference Proceedings. Keystone, Colorado: American Institute of Physics, 2006.
[8] Takakoshi T. PIV measurement of slush nitrogen flow in a pipe[C]//Proceedings of AIP Conference Proceedings. AIP, 2006: 1025-1032.
[9] Ohira K. Pressure drop reduction phenomenon of slush nitrogen flow in a horizontal pipe[J]. Cryogenics, 2011, 51(7): 389-396.
[10] Ohira K, Okuyama J, Nakagomi K, et al. Pressure drop of slush nitrogen flow in converging-diverging pipes and corrugated pipes[J]. Cryogenics, 2012, 52(12): 771-783.
[11] Ohira K, Kurose K, Okuyama J, et al. Pressure drop reduction and heat transfer deterioration of slush nitrogen in triangular and circular pipe flows[J]. Cryogenics, 2017, 81: 60-75.
[12] Ohira K, Nakagomi K, Takahashi K, et al. Pressuredrop reduction and heat-transfer deterioration of slush nitrogen in square pipe flow[J]. Physics Procedia, 2015, 67: 681-686.
[13] 谢福寿, 夏斯琦, 朱宇豪, 等. 液氢/固氢混合物(氢浆)制备可视化试验研究[J]. 西安交通大学学报, 2022, 56(6): 26-33.
[14] 夏斯琦, 谢福寿, 厉彦忠, 等. 贮箱内浆态低温推进剂沉降特性数值研究[J]. 西安交通大学学报, 2024, 58(1): 146-156.
[15] Xie F S, Sun Q. Comprehensive performance evaluation of densified liquid hydrogen/liquid oxygen as propulsion fuel[J]. Energies, 2022, 15(4): 1365.
[16] Ohira K. Slush hydrogen production, storage, and transportation[M]//Compendium of hydrogen energy. Amsterdam: Elsevier, 2016: 53-90.
[17] Baik J H, T-Raissi A. R&D processes for increasing density of cryogenic propellants at FSEC[J]. Cryogenics, 2004, 44(6/7/8): 451-458.
[18] Das T, Kweon S C, Choi J G, et al. Spin conversion of hydrogen over LaFeO3/Al2O3 catalysts at low temperature: Synthesis, characterization and activity[J]. International Journal of Hydrogen Energy, 2015, 40(1): 383-391.
[19] Das T, Kweon S C, Nah I W, et al. Spin conversion of hydrogen using supported iron catalysts at cryogenic temperature[J]. Cryogenics, 2015, 69: 36-43.
[20] 江芋叶, 张鹏. 浆氢与浆氮技术研究现状[J]. 低温与超导, 2007, 35(3): 205-214.
[21] Collier R S. Thermally induced oscillations in cryogenic systems[R]. Colorado: National Aeronautics and Space Administration, 1972.
[22] Ohira K. Development of density and mass flow rate measurement technologies for slush hydrogen[J]. Cryogenics, 2004, 44(1): 59-68.
[23] Park Y M. Literature research on the production, loading, flow, and heat transfer of slush hydrogen[J]. International Journal of Hydrogen Energy, 2010, 35(23): 12993-13003.
[24] Ishimoto J. Basic study on two-phase flow characteristics of slush nitrogen in a pipe[C]//Proceedings of AIP Conference Proceedings. AIP, 2004: 1099-1106.
[25] Waynert J. Production of slush hydrogen using magnetic refrigeration[R]. Colorado: Advances in Cryogenic Engineering, 1989.
[26] Kawamura K, Machida A, Ikeuchi M, et al. Apparatus for producing slush nitrogen and method for producing the same: US20060000222[P]. 2006-01-05.
[27] 张春伟, 柴栋栋, 马军强, 等. 基于双喷射雾化的浆氢制备及可视化研究[J]. 低温工程, 2023(2): 40-49.
[28] Lee C, Ryu J, Sohn G, et al. Technical review on liquid/ solid (slush) hydrogen production unit for long-term and bulk storage[J]. Transactions of the Korean Hydrogen and New Energy Society, 2021, 32(6): 565-572.
[29] Swanger A M, Notardonato W U, Fesmire J E, et al. Large scale production of densified hydrogen to the triple point and below[J]. IOP Conference Series: Materials Science and Engineering, 2017, 278: 012013.
[30] 江芋叶. 浆氮的制备及其在水平管内的流动与相变换热特性研究[D]. 上海: 上海交通大学, 2013.
[31] Ellerbruch D A. Microwave methods for cryogenic liquid and slush instrumentation[J]. IEEE Transactions on Instrumentation and Measurement, 1970, 19(4): 412-416.
[32] 陈俊羽, 张乐, 鲍锦, 等. 固液悬浮体系下超声波浓度测量技术进展[J]. 应用声学, 2023, 42(4): 880-888.
[33] 李亦健. 深低温固液两相流管内流动及传热机理研究[D]. 杭州: 浙江大学, 2019.
[34] Govier G W, Aziz K. The flow of complex mixtures in pipes[M]. New York: Van Nostrand Reinhold Co, 1972.
[35] 王武超, 刘慧卿, 东晓虎, 等. 热复合流体对堵剂颗粒沉降特性的影响[J]. 油气地质与采收率, 2023, 30(5): 119-129.
[36] 陈柏文, 拾兵, 王俊杰, 等. 紊动与盐度共同作用的黄河口黏性泥沙絮凝沉降试验研究[J]. 水利水运工程学报, 2024(2): 91-99.
[37] 肖之敏, 熊鹰, 周晓龙. FCC油浆中固体颗粒沉降特性与沉降速度模型[J]. 华东理工大学学报(自然科学版), 2023, 49(3): 368-375.
[38] 郑志, 王树立, 武玉宪. NGH浆体管道的阻力特性及其摩阻损失的计算[J]. 石油规划设计, 2010, 21(2): 30-33.
[39] 张鹏, 石新杰. 浆氢在水平圆管内流动的数值模拟[J]. 化工学报, 2014, 65(增刊2): 38-44.
[40] Jin T, Li Y J, Liang Z B, et al. Numerical prediction of flow characteristics of slush hydrogen in a horizontal pipe[J]. International Journal of Hydrogen Energy, 2017, 42(6): 3778-3789.
[41] Ma F, Zhang P, Shi X J. Hydraulic and heat transfer characteristics of slush hydrogen in a circular pipe under terrestrial and microgravity conditions[J]. International Journal of Heat and Mass Transfer, 2017, 110: 482-495.
[42] 刘翠伟, 崔兆雪, 张家轩, 等. 掺氢天然气管道的分层现象[J]. 中国石油大学学报(自然科学版), 2022, 46(5): 153-161.