Papers

An evaluation method of technology popularization and application of integrated energy system based on digital portrait

  • LIANG Chen ,
  • MA Xiping ,
  • DONG Xiaoyang ,
  • LI Yaxin ,
  • LUO Li ,
  • XU Rui
Expand
  • Electric Power Research Institute of State Grid Gansu Electric Power Company, Lanzhou 730050, China

Received date: 2022-12-25

  Revised date: 2023-02-23

  Online published: 2024-09-29

Abstract

Integrated energy system (IES) has broken the boundaries between various terminal energy networks. Comprehensive evaluation of its technology popularization and application is an important step to promote the development and construction of IES. To cope with the problems of IES such as technology's wide scope, large number influencing factors, and complicated evaluation indexes, an evaluation model and method of IES technology's popularization and application are established by combining operation research comprehensive evaluation theory and digital portrait technology. Based on massive monitoring data and IES operation data, the evaluation model generates a multi-source feature evaluation label system regarding to environment, performance, economy and society, and integrates the popularization and application information from many aspects to build a complete and multidimensional IES technology portrait. According to expert scoring and important information feature screening of IES original data, a method combining subjective and objective analytic hierarchy process (AHP-entropy weight method) is used to assign weights to the labels, and the contour of IES technical portrait is formed by fine weight calculation. Finally, the national IES demonstration project in Shanghai Lingang and a park level IES project in the north are selected as examples for evaluation and verification. Results show that the model and method proposed in this paper are applicable in engineering applications and can provide reference for design and construction of IES and promotion and application of key technologies.

Cite this article

LIANG Chen , MA Xiping , DONG Xiaoyang , LI Yaxin , LUO Li , XU Rui . An evaluation method of technology popularization and application of integrated energy system based on digital portrait[J]. Science & Technology Review, 2024 , 42(17) : 97 -110 . DOI: 10.3981/j.issn.1000-7857.2022.12.02037

References

[1] 方斯顿, 赵常宏, 丁肇豪, 等. 面向碳中和的港口综合能源系统(一):典型系统结构与关键问题[J]. 中国电机工程学报, 2023, 43(1):114-135.
[2] 张旋, 张玉敏, 吉兴全, 等. 计及电-气-热综合能源系统的输配协同优化调度[J]. 电网技术, 2022, 46(11):4256-4270.
[3] 曾鸣, 刘英新, 周鹏程, 等. 综合能源系统建模及效益评价体系综述与展望[J]. 电网技术, 2018, 42(6):1697-1708.
[4] 郭创新, 丁筱. 综合能源系统优化运行研究现状及展望[J]. 发电技术, 2020, 41(1):2-8.
[5] 丁曦, 张笑演, 王胜寒, 等. 双碳目标下考虑最优建设时序的区域综合能源系统低碳规划[J]. 高电压技术, 2022, 48(7):2584-2596.
[6] 吕佳炜, 张沈习, 程浩忠, 等. 考虑互联互动的区域综合能源系统规划研究综述[J]. 中国电机工程学报, 2021, 41(12):4001-4021.
[7] 郭艳飞, 任雪桂, 鞠力, 等. 基于层次分析法的综合能源系统能效评估方法研究及应用[J]. 电力科学与技术学报, 2018, 33(4):121-128.
[8] 习近平. 关于《中共中央关于制定国民经济和社会发展第十四个五年规划和二○三五年远景目标的建议》的说明[J]. 经济, 2020(12):16-20.
[9] 汪颖, 喻梦洁, 卢宏, 等. 基于最大互信息的干扰源类型识别及电能质量需求画像技术[J]. 电力系统自动化, 2022, 46(9):171-181.
[10] 王飞飞, 周少华, 韩迎军. 基于大数据技术的电力用户画像分析[J]. 山西电力, 2019(4):26-29.
[11] 张宇帆, 艾芊, 肖斐, 等. 数据驱动电能质量分析现状及其支撑技术与展望[J]. 电力自动化设备, 2018, 38(11):187-196.
[12] 周李, 赵露君, 高卫国. 稀疏编码模型在电力用户异常用电行为探测中的应用研究[J]. 电网技术, 2015, 39(11):3182-3188.
[13] 叶海峰, 罗颖婷, 许海林, 等. 基于画像的变压器精细化管控策略研究[J]. 微型电脑应用, 2019, 35(2):67-69.
[14] 沈岩, 李东东, 林顺富. 碳中和背景下的工业用户综合用能指标体系多维画像方法[J]. 中国电力, 2022, 55(11):91-96.
[15] 刘姜. 基于大数据的用户画像构建方法与运用探究[J]. 科技创新与应用, 2022, 12(9):139-142.
[16] Ren H B, Wu Q, Ren J X, et al. Influence analysis of climate condition on the optimal adoption of distributed energy resource systems in China[J]. Advanced Materials Research, 2013, 805-806:595-598.
[17] Maraver D, Sin A, Royo J, et al. Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters[J]. Applied Energy, 2013, 102:1303-1313.
[18] 冯晓梅, 张瑞雪, 李骥, 等. 建筑多能源系统优化评价方法研究[J]. 建筑节能, 2020, 48(11):45-50.
[19] 韩中合, 祁超, 向鹏, 等. 分布式能源系统效益分析及综合评价[J]. 热力发电, 2018, 47(2):31-36.
[20] 王继业, 季知祥, 史梦洁, 等. 智能配用电大数据需求分析与应用研究[J]. 中国电机工程学报, 2015, 35(8):1829-1836.
[21] 王利利, 张琳娟, 许长清, 等. 能源互联网背景下园区用户画像及成熟度评价模型研究[J]. 中国电力, 2020, 53(8):19-28.
[22] Nasraoui O, Soliman M, Saka E, et al. A web usage mining framework for mining evolving user profiles in dynamic web sites[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(2):202-215.
[23] 李家桐, 谢宁, 王承民, 等. 基于CHP机组碳排放分析的综合能源系统低碳调度优化方法[J]. 智慧电力, 2024, 52(6):31-37.
[24] 朱石剑. 电力用户综合能效评估及系统研发[D]. 天津:天津大学, 2019.
[25] 吴柯蓉. 基于大数据分析方法的电力95598服务质量提升研究[D]. 南宁:广西大学, 2021.
[26] LeRouge C, Ma J, Sneha S, et al. User profiles and personas in the design and development of consumer health technologies[J]. International Journal of Medical Informatics, 2013, 82(11):e251-e268.
[27] Al-Shamri M Y H. User profiling approaches for demographic recommender systems[J]. Knowledge-Based Systems, 2016, 100:175-187.
[28] 任德军, 刘自发, 高峰, 等. 考虑碳交易机制与需求响应的园区综合能源系统电热协同运行优化研究[J]. 热力发电, 2022, 51(3):119-130.
[29] 罗洋. 基于AHP-熵权法的综合能源系统多指标评价研究[D]. 北京:华北电力大学, 2021.
[30] 黄子硕, 于航. 不确定规划思维下社区能源规划指标初探[C]//2014(第九届)城市发展与规划大会. 天津:中国城市科学研究会, 2014:1-4.
[31] 张涛, 朱彤, 高乃平, 等. 分布式冷热电能源系统优化设计及多指标综合评价方法的研究[J]. 中国电机工程学报, 2015, 35(14):3706-3713.
[32] 谢晔. 火电企业二氧化硫排放量核算方法研究:以浙江省为例[J]. 低碳世界, 2017(11):14-15.
[33] 曾建勋. 技术先进性评价的文献计量法[J]. 情报知识, 1987, 7(4):29-32.
[34] 高艳红, 杨建华, 杨帆. 技术先进性评估指标体系构建及评估方法研究[J]. 科技进步与对策, 2013, 30(5):138-142.
[35] 鞠立伟. 需求响应参与清洁能源集成消纳与效益评价模型研究[D]. 北京:华北电力大学, 2017.
[36] 刘杰杰, 夏玮, 刘子杰, 等. 基于熵权法-层次分析法的蒸汽吞吐评价指标构建[J]. 节能, 2022, 41(3):8-16.
[37] 孟建辉, 高凯, 韩冰, 等. 适用于大规模新能源直流外送方案的评价体系及评估方法[J/OL]. 华北电力大学学报(自然科学版), 1-10[2024-07-08]. https://link.cnki.net/urlid/13.1212.TM.20240627.1742.002.
Outlines

/