[1] 清华大学. 中国碳中和目标下的风光技术展望[EB/OL].[2024-01-31]. https://www.efchina.org/Reports-zh/reportsnp-20240131-zh.
[2] 国家能源局. 2023年全国电力工业统计数据[EB/OL].[2024-01-26]. https://www.nea.gov.cn/2024-01/26/c_131-0762246.htm.
[3] The World Bank. The growing role of minerals and metals for a low carbon future[R]. Washington DC:The World Bank Group, 2017.
[4] Hund K, La Porta D, Fabregas T P, et al. Minerals for climate action:The mineral intensity of the clean energy transition[M]. Washington DC:World Bank, 2023.
[5] IEA. World Energy Outlook 2023[R]. Paris:International Energy Agency, 2023.
[6] IEA. Energy Technology Perspective 2023[R]. Paris:International Energy Agency, 2023.
[7] Kleijn R, Van der Voet E, Kramer G J, et al. Metal requirements of low-carbon power generation[J]. Energy, 2011, 36(9):5640-5648.
[8] IEA. The role of critical minerals in clean energy transitions[R]. Paris:International Energy Agency, 2021.
[9] Graedel T E, Harper E M, Nassar N T, et al. Criticality of metals and metalloids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(14):4257-4262.
[10] Graedel T E, Barr R, Chandler C, et al. Methodology of metal criticality determination[J]. Environmental Science & Technology, 2012, 46(2):1063-1070.
[11] 汤林彬,陈伟强. 基于物质流视角的中国能源金属供应风险评估研究[J]. 煤炭经济研究,2024, 44(1):153-161.
[12] Li J S, Peng K, Wang P, et al. Critical rare-earth elements mismatch global wind-power ambitions[J]. One Earth, 2020, 3(1):116-125.
[13] Helbig C, Bradshaw A M, Kolotzek C, et al. Supply risks associated with CdTe and CIGS thin-film photovoltaics[J]. Applied Energy, 2016, 178:422-433.
[14] Zhou Y J, Li J W, Wang G S, et al. Assessing the shortto medium-term supply risks of clean energy minerals for China[J]. Journal of Cleaner Production, 2019, 215:217-225.
[15] 国务院. 推动大规模设备更新和消费品以旧换新行动方案[EB/OL].[2024-03-13]. https://www.gov.cn/zhengce/content/202403/content_6939232.htm.
[16] Geng Y, Sarkis J, Bleischwitz R. How to globalize the circular economy[J]. Nature, 2019, 565(7738):153-155.
[17] Geng Y, Sarkis J, Bleischwitz R. How to build a circular economy for rare-earth elements[J]. Nature, 2023, 619(7969):248-251.
[18] Fu X K, Ueland S M, Olivetti E. Econometric modeling of recycled copper supply[J]. Resources, Conservation and Recycling, 2017, 122:219-226.
[19] Dai T, Liu Y F, Wang P, et al. Unlocking dysprosium constraints for China's 1.5℃ climate target[J]. Environmental Science & Technology, 2023, 57(38):14113-14126.
[20] Nakamura S, Kondo Y, Kagawa S, et al. MaTrace:Tracing the fate of materials over time and across products in open-loop recycling[J]. Environmental Science & Technology, 2014, 48(13):7207-7214.
[21] Della B S, Sen B, Cimpan C, et al. Exploring the impact of recycling on demand-supply balance of critical materials in green transition:A dynamic multi-regional waste input-output analysis[J]. Environmental Science & Technology, 2023, 57(28):10221-10230.
[22] Liu B C, Wang H Y, Liang X Q, et al. Recycling to alleviate the gap between supply and demand of raw materials in China's photovoltaic industry[J]. Resources, Conservation and Recycling, 2024, 201:107324.
[23] Zhang S, Chen W Y. Assessing the energy transition in China towards carbon neutrality with a probabilistic framework[J]. Nature Communications, 2022, 13(1):87.
[24] Wang C, Feng K S, Liu X, et al. Looming challenge of photovoltaic waste under China's solar ambition:A spatial-temporal assessment[J]. Applied Energy, 2022, 307:118186.
[25] Chen W Q. Recycling rates of aluminum in the United States[J]. Journal of Industrial Ecology, 2013, 17(6):926-938.
[26] 任凯鹏. 考虑金属可得性的中国风光能源发展路径研究[D]. 北京:中国石油大学(北京), 2022.
[27] 中国煤控项目1.5度能源情景课题组. 中国实现全球1.5℃目标下的能源排放情景研究[R]. 北京:中国煤控项目1.5度能源情景课题组, 2018.
[28] 项目综合报告编写组, 何建坤, 解振华, 等.《中国长期低碳发展战略与转型路径研究》综合报告[J]. 中国人口·资源与环境, 2020, 30(11):1-25.
[29] 国家发改委能源研究所. 中国可再生能源展望2018[R]. 北京:国家发改委能源研究所,2019.
[30] 王金南. 攻克十大关键技术实现碳达峰碳中和[R]. 北京:生态环境部环境规划院, 2021.
[31] IEA. An energy sector roadmap to carbon neutrality in China[R]. Paris:International Energy Agency, 2021.
[32] 全球能源互联网发展合作组织. 中国2030年能源电力发展规划研究及2060年展望[R]. 北京:全球能源互联网发展合作组织, 2021.
[33] 唐旭, 任凯鹏, 李明, 等. 双碳目标下中国能源中长期走势评估[R]. 北京:中国石油大学(北京)碳中和与能源创新发展研究院, 2021.
[34] USGS. Mineral Commodity Summaries 2021[R]. Virginia:U.S. Geological Survey, 2021.
[35] 中华人民共和国自然资源部. 中国矿产资源报告-2020[R]. 北京:地质出版社, 2020.
[36] Gervais E, Shammugam S, Friedrich L, et al. Raw material needs for the large-scale deployments of photovoltaics-Effects of innovation-driven roadmaps on material constraints until 2050[J]. Renewable and Sustainable Energy Review, 2021, 137:110589.
[37] Goldschmidt J C, Wagner L, Pietzcker R, et al. Technological learning for resource efficient terawatt scale photovoltaics[J]. Energy and Environmental Science, 2021, 14:5147-5160.
[38] Carrara S, Alves D P, Plazzotta B, et al. Raw materials demand for wind and solar PV technologies in the transition towards a decarbonized energy system[R]. Luxembourg:Publication Office of the European Union, 2020.
[39] Nassar N T, Wilburn D R, Goonan T G. Byproduct metal requirements for U. S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios[J]. Applied Energy, 2016, 183:1209-1226.
[40] Shammugam S, Gervais E, Schlegl T, et al. Raw metal needs and supply risks for the development of wind energy in Germany until 2050[J]. Journal of Cleaner Production, 2019, 221:738-752.
[41] Nyffenegger R, Boukhatmi A, Radavicius T, et al. How circular is the European photovoltaic industry? Practical insights on current circular economy barriers, enablers, and goals[J]. Journal of Cleaner Production, 2024, 448:141376.
[42] Wang P, Yang Y Y, Heidrich O, et al. Regional rareearth element supply and demand balanced with circular economy strategies[J]. Nature Geoscience, 2024, 17(1):94-102.
[43] Takimoto H, Kosai S, Watari T, et al. Circular economy can mitigate rising mining demand from global vehicle electrification[J]. Resources, Conservation and Recycling, 2024, 209:107748.
[44] 倪思洁. 先进核能技术:向更安全、更可靠努力[EB/OL].[2024-04-02]. https://news.sciencenet.cn/htmlnews/2022/8/483828.shtm.
[45] Hill D J. Nuclear energy for the future[J]. Nature Materials, 2008, 7:680-682.
[46] Tokimatsu K, Höök, M, McLellan B C, et al. Energy modeling approach to the global energy-mineral nexus:Exploring metal requirements and the well-below 2° C target with 100 percent renewable energy[J]. Applied Energy, 2018, 225:1158-1175.