[1] 李涛. 高密封装用BGA焊球制备工艺研究[D]. 洛阳: 河南科技大学, 2017.
[2] 李涛, 闫焉服, 王广欣, 等. 球化介质对球栅阵列封装钎焊球质量的影响[J]. 机械工程材料, 2017, 41(10): 28-32.
[3] Lehtonen J, Ge Y L, Ciftci N, et al. Phase structures of gas atomized equiatomic CrFeNiMn high entropy alloy powder[J]. Journal of Alloys and Compounds, 2020, 827: 154142.
[4] Wang J Y, Yang H L, Ruan J M, et al. Microstructure and properties of CoCrNi medium-entropy alloy produced by gas atomization and spark plasma sintering[J]. Journal of Materials Research, 2019, 34(12): 2126-2136.
[5] 罗志伟, 赵小双, 罗莹莹, 等. 微滴喷射技术的研究现状及应用[J]. 重庆理工大学学报(自然科学版), 2015(5): 27-32.
[6] Dou Y B, Luo J, Qi L H, et al. Drop-on-demand printing of recyclable circuits by partially embedding molten metal droplets in plastic substrates[J]. Journal of Materials Processing Technology, 2021, 297: 117268.
[7] Ali Shah M, Lee D G, Lee B Y, et al. Classifications and applications of inkjet printing technology: A review[J]. IEEE Access, 2021, 9: 140079-140102.
[8] 鲁栋. 脉冲微孔均匀金属液滴喷射沉积成型技术研究[D]. 大连: 大连理工大学, 2014.
[9] 张宇琪, 彭湉, 周新丽. 微滴喷射法制备植物乳杆菌微胶囊的试验研究[J]. 上海理工大学学报, 2022, 44(1): 34-41.
[10] 蒋恒宇, 刘少锋. 喷射参数对微滴喷射系统喷射效果的影响[J]. 企业技术开发(学术版), 2011, 30(11): 91-93.
[11] 唐勇, 齐乐华, 罗俊, 等. 电磁致动式微滴按需喷射装置的设计及实现[J]. 机械科学与技术, 2013, 32(7): 946-949.
[12] 李珍妮. 纵向扰动控制下液体射流破碎机理的研究[D]. 天津: 天津大学, 2016.
[13] 周诗贵. 压电驱动膜片式微滴喷射技术仿真分析与实验研究[D]. 上海: 上海交通大学, 2013.
[14] 邓珺珺, 邓圭玲, 彭雯, 等. 压电驱动喷射点胶阀系统性能的仿真与实验[J]. 传感器与微系统, 2023, 42(1): 46-49.
[15] 张彦振, 李德格, 王凯新, 等. 用于喷墨打印的压电喷嘴研制及机理探究[J]. 电加工与模具, 2022(5): 48-52.
[16] 宋家兴. 压电式微滴喷射3D打印头喷射性能研究[D]. 银川: 宁夏大学, 2022.
[17] 黄杰光, 齐乐华, 罗俊. 金属微滴水平喷射关键参数调控机制及试验[J]. 航空学报, 2021, 42(10): 325-336.
[18] 刘作平, 周健, 裴泽光, 等. 同轴气流作用下压电式微滴喷射过程的数值模拟[J]. 东华大学学报(自然科学版), 2021, 47(4): 75-83.
[19] 蔡昊. DOD压电式喷墨打印液滴形成和沉积过程的研究[D]. 武汉: 华中科技大学, 2015.
[20] 袁方. 压电喷墨打印头结构优化及喷射性能研究[D]. 西安: 西安理工大学, 2021.
[21] 刘作平. 同轴气流作用下压电式微滴喷射过程的数值模拟研究[D]. 上海: 东华大学, 2021.
[22] Wang S K, Zhong Y H, Fang H S. Deformation characteristics of a single droplet driven by a piezoelectric nozzle of the drop-on-demand inkjet system[J]. Journal of Fluid Mechanics, 2019, 869: 634-645.
[23] Kang S H, Kim S, Sohn D K, et al. Analysis of drop-ondemand piezo inkjet performance[J]. Physics of Fluids, 2020, 32(2): 022007.
[24] Bernasconi R, Brovelli S, Viviani P, et al. Piezoelectric drop-on-demand inkjet printing of high-viscosity inks [J]. Advanced Engineering Materials, 2022, 24(1): 2100733.
[25] 季成炜, 朱丽, 肖纳, 等. 新型电磁铁驱动的撞针式微滴喷射装置[J]. 微纳电子技术, 2019, 56(11): 918-924.
[26] 袁涛, 雷永平, 王同举, 等. 微滴制备及其均一性检测[J]. 仪表技术与传感器, 2020(8): 122-126.
[27] 张楠, 林健, 王同举, 等. 用于打印柔性导线的液态金属微滴制备过程研究[J]. 电子元件与材料, 2018, 37(7): 1-7.
[28] 王同举. 基于磁流体技术制备均一颗粒的研究[D]. 北京: 北京工业大学, 2019.
[29] 赵玉佩. 气压阀控式微喷方法与控制技术研究[D]. 济南: 山东大学, 2021.
[30] 王志海, 仝帅, 王飞, 等. 气动阀控微液滴产生系统的优化[J]. 北京工业大学学报, 2019, 45(1): 15-23.
[31] 王晨. 金属微熔滴按需喷射及沉积过程研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
[32] 李粲. 单分散金属微球的制备及快速凝固研究[D]. 武汉: 武汉理工大学, 2019.
[33] 王志海, 王梦, 王璨, 等. 气动阀控式微米按需液滴喷射过程对细胞活性的影响[J]. 北京工业大学学报, 2019, 45(7): 631-637.
[34] Liu H Y, Wang Z B, Gao L, et al. Optofluidic resonance of a transparent liquid jet excited by a continuous wave laser[J]. Physical Review Letters, 2021, 127(24): 244502.
[35] 郑振粮. 3D打印按需滴化微喷射关键技术[D]. 哈尔滨: 哈尔滨工业大学, 2015.
[36] 许立宁, 崔大付. 剪式压电微喷的设计及分析[J]. 压电与声光, 2006, 28(4): 397-399.
[37] 未永, 吕玉山. 收缩管型压电微滴喷射理论分析与实验研究[J]. 压电与声光, 2014, 36(3): 476-479.
[38] 魏振先, 魏修亭, 郭翠平, 等. 收缩管型压电喷头微滴喷射仿真及实验研究[J]. 现代制造工程, 2017, 12: 96-100.
[39] 徐磊. 压电喷墨喷射特性及残余振荡抑制研究[D]. 西安: 西安理工大学, 2021.
[40] Li X, Xu C H, Liu C Q, et al. The ultracompact HL-2040 and HL-2070N are recent additions to Brother's line of personal laser printers[J]. Chinese Chemical Letters, 2013, 8998(8): 471-494.
[41] 杨月星. 压电式单液滴发生装置的设计与实验研究[D]. 镇江: 江苏大学, 2018.
[42] Kim S, Sung J, Lee M H. Pressure wave and fluid velocity in a bend-mode inkjet nozzle with double PZT actuators[J]. Journal of Thermal Science, 2013, 22(1): 29-35.
[43] Magazine R, van Bochove B, Borandeh S, et al. 3D inkjet-printing of photo-crosslinkable resins for microlens fabrication[J]. Additive Manufacturing, 2022, 50: 102534.
[44] Qi L H, Jiang X S, Luo J, et al. Dominant factors of metal jet breakup in micro droplet deposition manufacturing technique[J]. Chinese Journal of Aeronautics, 2010, 23(4): 495-500.
[45] 付一凡. 脉冲微孔喷射法均匀球形微米级粒子的制备及其影响因素研究[D]. 大连: 大连理工大学, 2013.
[46] Yi H, Qi L H, Luo J, et al. Elimination of droplet rebound off soluble substrate in metal droplet deposition [J]. Materials Letters, 2018, 216: 232-235.
[47] 周诗贵, 习俊通. 压电驱动膜片式微滴喷射仿真与尺度一致性试验研究[J]. 机械工程学报, 2013, 49(8): 178-185.
[48] 于洋, 史耀武, 夏志东, 等. BGA焊球表面状态与微观结构关系的研究[J]. 稀有金属材料与工程, 2008, 37(6): 1092-1094.
[49] Wang T J, Lin J, Guo X Y, et al. A new method for producing uniform droplets by continuous-ink-jet technology[J]. Review of Scientific Instruments, 2018, 89(8): 0850081-0850086.
[50] Wang T J, Lin J, Lei Y P, et al. Dominant factors to produce single droplet per cycle using drop-on-demand technology driven by pulse electromagnetic force[J]. Vacuum, 2018, 156: 128-134.
[51] Wang T J, Lin J, Lei Y P, et al. Droplets generator: Formation and control of main and satellite droplets[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558: 303-312.
[52] Wang T J, Lin J, Lei Y P, et al. Research on the droplets formation of gallium based eutectic alloys based on the mode of pulse electromagnetic force[J]. Vacuum, 2019, 163: 158-163.
[53] Gilani N, Aboulkhair N T, Simonelli M, et al. From impact to solidification in drop-on-demand metal additive manufacturing using MetalJet[J]. Additive Manufacturing, 2022, 55: 102827.
[54] Simonelli M, Aboulkhair N, Rasa M, et al. Towards digital metal additive manufacturing via high-temperature drop-on-demand jetting[J]. Additive Manufacturing, 2019, 30: 100930.
[55] 朱兴晨. 气动式金属微滴按需喷射过程数值模拟与实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
[56] Zhong S Y, Qi L H, Luo J, et al. Effect of process parameters on copper droplet ejecting by pneumatic dropon-demand technology[J]. Journal of Materials Processing Technology, 2014, 214(12): 3089-3097.
[57] Moqadam S I, Mädler L, Ellendt N. Microstructure adjustment of spherical micro-samples for high-throughput analysis using a drop-on-demand droplet generator [J]. Materials, 2019, 12(22): 3769.
[58] Moqadam S I, Mädler L, Ellendt N. A High temperature drop-on-demand droplet generator for metallic Melts[J]. micromachines, 2019, 10(7): 477.
[59] Yi H, Qi L H, Luo J, et al. Direct fabrication of metal tubes with high-quality inner surfaces via droplet deposition over soluble cores[J]. Journal of Materials Processing Technology, 2019, 264: 145-154.
[60] 舒霞云. 气动膜片式金属微滴喷射理论与实验研究[D]. 武汉: 华中科技大学, 2009.
[61] 肖峻峰. 气动膜片式微滴喷射系统研究[D]. 武汉: 华中科技大学, 2009.
[62] Zhao D K, Zhou H Z, Wang Y F, et al. Drop-on-demand (DOD) inkjet dynamics of printing viscoelastic conductive ink[J]. Additive Manufacturing, 2021, 48: 102451.
[63] Amirzadeh A, Raessi M, Chandra S. Producing molten metal droplets smaller than the nozzle diameter using a pneumatic drop-on-demand generator[J]. Experimental Thermal and Fluid Science, 2013, 47: 26-33.
[64] Si T, Li F, Yin X Y, et al. Modes in flow focusing and instability of coaxial liquid-gas jets[J]. Journal of Fluid Mechanics, 2009, 629: 1-23.
[65] 穆恺, 司廷. 毛细流动聚焦的实验方法及过程控制[J]. 实验流体力学, 2020, 34(2): 46-56.
[66] 司廷, 尹协振. 流动聚焦研究进展及其应用[J]. 科学通报, 2011, 56(8): 537-546.
[67] 康鹏, 郭鉴锋, 穆恺, 等. 流动聚焦中液体锥形形态和流动结构实验研究[J]. 实验流体力学, 2022, 36(2): 74-81.
[68] 李帅兵, 司廷. 射流破碎的线性不稳定性分析方法[J]. 空气动力学学报, 2019, 37(3): 356-372.
[69] 司廷, 李广滨, 尹协振. 流动聚焦及射流不稳定性[J]. 力学进展, 2017, 47: 201706.
[70] 司廷. 流动聚焦的实验和理论研究[D]. 合肥: 中国科学技术大学, 2009.
[71] 司廷, 刘志勇, 尹协振. 流动聚焦中锥形和射流直径影响因素的实验研究[J]. 实验流体力学, 2008, 22(1): 21-26.
[72] 司廷, 刘志勇, 尹协振. 流动聚焦实验[J]. 力学季刊, 2007, 28(4): 533-538.
[73] Hara K, Kurashima Y, Hashimoto N, et al. Optimization for chip stack in 3-D packaging[J]. IEEE Transactions on Advanced Packaging, 2005, 28(3): 367-376.
[74] Yamada H, Togasaki T, Kimura M, et al. High-density 3-D packaging technology based on the sidewall interconnection method and its application for CCD microcamera visual inspection system[J]. IEEE Transactions on Advanced Packaging, 2003, 26(2): 113-121.
[75] Wang C P, Liu X J, Ohnuma I, et al. Formation of immiscible alloy powders with egg-type microstructure[J]. Science, 2002, 297(5583): 990-993.
[76] 董伟, 孟瑶, 许富民, 等. 基于单分散逐液滴雾化法制备锡合金微细球形金属粉末[J]. 材料工程, 2020, 48(9): 124-131.
[77] Mu B Y, Xu Y N, Xu J C, et al. Inkjet direct printing approach for flexible electronic[J]. Results in Engineering, 2022, 14: 100466.
[78] Zhang T Y, Wang X L, Li T J, et al. Fabrication of flexible copper-based electronics with high-resolution and high-conductivity on paper via inkjet printing[J]. Journal of Materials Chemistry C, 2014, 2(2): 286-294.
[79] Xu Y, Qi F J, Gao X Y, et al. Direct droplet writing-A novel droplet-punching capillary-splitting 3D printing method for highly viscous materials[J]. Procedia Manufacturing, 2021, 53: 472-483.
[80] Li K, Liu J K, Chen W S, et al. Controllable printing droplets on demand by piezoelectric inkjet: Applications and methods[J]. Microsystem Technologies, 2018, 24(2): 879-889.
[81] 桑瑞娟. UV喷墨3D打印木材研究现状与发展前景[J]. 林业工程学报, 2020, 5(6): 20-28.
[82] Lee T M, Kang T G, Yang J S, et al. 3D metal microstructure fabrication using a Molten Metal DOD Inkjet System[C]//Proceedings of TRANSDUCERS 2007-2007 International Solid-State Sensors, Actuators and Microsystems Conference. Piscataway, NJ: IEEE, 2007: 1637-1640.
[83] Derby B. Additive manufacture of ceramics components by inkjet printing[J]. Engineering, 2015, 1(1): 113-123.
[84] 韩县伟, 张洪武, 罗洪艳, 等. 基于微流控液滴形成技术的聚乙烯醇微球制备[J]. 分析化学, 2018, 46(8): 1269-1274.
[85] 袁景. 多孔β-磷酸三钙骨组织工程支架负载抗结核药物缓释系统的3D打印制备及初步研究[D]. 兰州: 甘肃中医学院, 2015.
[86] 纪闯. 高粘度生物材料的压电式微喷射3D打印关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[87] 时佳. 压电式按需滴化微喷射生物3D打印技术的研究与优化[D]. 沈阳: 东北大学, 2019.