Reviews

Research progress of uniform droplets formation technology

  • WANG Tongju ,
  • ZHANG Qimei ,
  • ZHANG Wenqian ,
  • LEI Yongping ,
  • LIN jian ,
  • FU Hanguang
Expand
  • 1. School of Electronic and Control Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China;
    2. Hebei Key Laboratory of Micro Spacecraft Technology, Langfang 065000, China;
    3. Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100000, China

Received date: 2023-12-18

  Revised date: 2024-03-05

  Online published: 2024-10-17

Abstract

The application of uniform droplets is extensive, and the generation methods are increasingly efficient and controllable. This paper describes the principles of continue ink jet (CIJ) and drop-on-demand (DOD). Based on different pulse force formation principles, the technology for producing uniform droplets can be categorized into piezoelectric mode, electromagnetic vibration mode, magnetic fluid mode, gas pulse actuation mode and laser fluid resonance mode. The principles and technical status of these five modes are analyzed and summarized. Furthermore, this paper summarizes the application status of uniform droplet production technology in electronic packaging, inkjet printing technology, micro 3D printing, and biopharmaceuticals. And it provides a prospect for the development trend of uniform droplet production technology.

Cite this article

WANG Tongju , ZHANG Qimei , ZHANG Wenqian , LEI Yongping , LIN jian , FU Hanguang . Research progress of uniform droplets formation technology[J]. Science & Technology Review, 2024 , 42(18) : 76 -90 . DOI: 10.3981/j.issn.1000-7857.2023.06.00837

References

[1] 李涛. 高密封装用BGA焊球制备工艺研究[D]. 洛阳: 河南科技大学, 2017.
[2] 李涛, 闫焉服, 王广欣, 等. 球化介质对球栅阵列封装钎焊球质量的影响[J]. 机械工程材料, 2017, 41(10): 28-32.
[3] Lehtonen J, Ge Y L, Ciftci N, et al. Phase structures of gas atomized equiatomic CrFeNiMn high entropy alloy powder[J]. Journal of Alloys and Compounds, 2020, 827: 154142.
[4] Wang J Y, Yang H L, Ruan J M, et al. Microstructure and properties of CoCrNi medium-entropy alloy produced by gas atomization and spark plasma sintering[J]. Journal of Materials Research, 2019, 34(12): 2126-2136.
[5] 罗志伟, 赵小双, 罗莹莹, 等. 微滴喷射技术的研究现状及应用[J]. 重庆理工大学学报(自然科学版), 2015(5): 27-32.
[6] Dou Y B, Luo J, Qi L H, et al. Drop-on-demand printing of recyclable circuits by partially embedding molten metal droplets in plastic substrates[J]. Journal of Materials Processing Technology, 2021, 297: 117268.
[7] Ali Shah M, Lee D G, Lee B Y, et al. Classifications and applications of inkjet printing technology: A review[J]. IEEE Access, 2021, 9: 140079-140102.
[8] 鲁栋. 脉冲微孔均匀金属液滴喷射沉积成型技术研究[D]. 大连: 大连理工大学, 2014.
[9] 张宇琪, 彭湉, 周新丽. 微滴喷射法制备植物乳杆菌微胶囊的试验研究[J]. 上海理工大学学报, 2022, 44(1): 34-41.
[10] 蒋恒宇, 刘少锋. 喷射参数对微滴喷射系统喷射效果的影响[J]. 企业技术开发(学术版), 2011, 30(11): 91-93.
[11] 唐勇, 齐乐华, 罗俊, 等. 电磁致动式微滴按需喷射装置的设计及实现[J]. 机械科学与技术, 2013, 32(7): 946-949.
[12] 李珍妮. 纵向扰动控制下液体射流破碎机理的研究[D]. 天津: 天津大学, 2016.
[13] 周诗贵. 压电驱动膜片式微滴喷射技术仿真分析与实验研究[D]. 上海: 上海交通大学, 2013.
[14] 邓珺珺, 邓圭玲, 彭雯, 等. 压电驱动喷射点胶阀系统性能的仿真与实验[J]. 传感器与微系统, 2023, 42(1): 46-49.
[15] 张彦振, 李德格, 王凯新, 等. 用于喷墨打印的压电喷嘴研制及机理探究[J]. 电加工与模具, 2022(5): 48-52.
[16] 宋家兴. 压电式微滴喷射3D打印头喷射性能研究[D]. 银川: 宁夏大学, 2022.
[17] 黄杰光, 齐乐华, 罗俊. 金属微滴水平喷射关键参数调控机制及试验[J]. 航空学报, 2021, 42(10): 325-336.
[18] 刘作平, 周健, 裴泽光, 等. 同轴气流作用下压电式微滴喷射过程的数值模拟[J]. 东华大学学报(自然科学版), 2021, 47(4): 75-83.
[19] 蔡昊. DOD压电式喷墨打印液滴形成和沉积过程的研究[D]. 武汉: 华中科技大学, 2015.
[20] 袁方. 压电喷墨打印头结构优化及喷射性能研究[D]. 西安: 西安理工大学, 2021.
[21] 刘作平. 同轴气流作用下压电式微滴喷射过程的数值模拟研究[D]. 上海: 东华大学, 2021.
[22] Wang S K, Zhong Y H, Fang H S. Deformation characteristics of a single droplet driven by a piezoelectric nozzle of the drop-on-demand inkjet system[J]. Journal of Fluid Mechanics, 2019, 869: 634-645.
[23] Kang S H, Kim S, Sohn D K, et al. Analysis of drop-ondemand piezo inkjet performance[J]. Physics of Fluids, 2020, 32(2): 022007.
[24] Bernasconi R, Brovelli S, Viviani P, et al. Piezoelectric drop-on-demand inkjet printing of high-viscosity inks [J]. Advanced Engineering Materials, 2022, 24(1): 2100733.
[25] 季成炜, 朱丽, 肖纳, 等. 新型电磁铁驱动的撞针式微滴喷射装置[J]. 微纳电子技术, 2019, 56(11): 918-924.
[26] 袁涛, 雷永平, 王同举, 等. 微滴制备及其均一性检测[J]. 仪表技术与传感器, 2020(8): 122-126.
[27] 张楠, 林健, 王同举, 等. 用于打印柔性导线的液态金属微滴制备过程研究[J]. 电子元件与材料, 2018, 37(7): 1-7.
[28] 王同举. 基于磁流体技术制备均一颗粒的研究[D]. 北京: 北京工业大学, 2019.
[29] 赵玉佩. 气压阀控式微喷方法与控制技术研究[D]. 济南: 山东大学, 2021.
[30] 王志海, 仝帅, 王飞, 等. 气动阀控微液滴产生系统的优化[J]. 北京工业大学学报, 2019, 45(1): 15-23.
[31] 王晨. 金属微熔滴按需喷射及沉积过程研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
[32] 李粲. 单分散金属微球的制备及快速凝固研究[D]. 武汉: 武汉理工大学, 2019.
[33] 王志海, 王梦, 王璨, 等. 气动阀控式微米按需液滴喷射过程对细胞活性的影响[J]. 北京工业大学学报, 2019, 45(7): 631-637.
[34] Liu H Y, Wang Z B, Gao L, et al. Optofluidic resonance of a transparent liquid jet excited by a continuous wave laser[J]. Physical Review Letters, 2021, 127(24): 244502.
[35] 郑振粮. 3D打印按需滴化微喷射关键技术[D]. 哈尔滨: 哈尔滨工业大学, 2015.
[36] 许立宁, 崔大付. 剪式压电微喷的设计及分析[J]. 压电与声光, 2006, 28(4): 397-399.
[37] 未永, 吕玉山. 收缩管型压电微滴喷射理论分析与实验研究[J]. 压电与声光, 2014, 36(3): 476-479.
[38] 魏振先, 魏修亭, 郭翠平, 等. 收缩管型压电喷头微滴喷射仿真及实验研究[J]. 现代制造工程, 2017, 12: 96-100.
[39] 徐磊. 压电喷墨喷射特性及残余振荡抑制研究[D]. 西安: 西安理工大学, 2021.
[40] Li X, Xu C H, Liu C Q, et al. The ultracompact HL-2040 and HL-2070N are recent additions to Brother's line of personal laser printers[J]. Chinese Chemical Letters, 2013, 8998(8): 471-494.
[41] 杨月星. 压电式单液滴发生装置的设计与实验研究[D]. 镇江: 江苏大学, 2018.
[42] Kim S, Sung J, Lee M H. Pressure wave and fluid velocity in a bend-mode inkjet nozzle with double PZT actuators[J]. Journal of Thermal Science, 2013, 22(1): 29-35.
[43] Magazine R, van Bochove B, Borandeh S, et al. 3D inkjet-printing of photo-crosslinkable resins for microlens fabrication[J]. Additive Manufacturing, 2022, 50: 102534.
[44] Qi L H, Jiang X S, Luo J, et al. Dominant factors of metal jet breakup in micro droplet deposition manufacturing technique[J]. Chinese Journal of Aeronautics, 2010, 23(4): 495-500.
[45] 付一凡. 脉冲微孔喷射法均匀球形微米级粒子的制备及其影响因素研究[D]. 大连: 大连理工大学, 2013.
[46] Yi H, Qi L H, Luo J, et al. Elimination of droplet rebound off soluble substrate in metal droplet deposition [J]. Materials Letters, 2018, 216: 232-235.
[47] 周诗贵, 习俊通. 压电驱动膜片式微滴喷射仿真与尺度一致性试验研究[J]. 机械工程学报, 2013, 49(8): 178-185.
[48] 于洋, 史耀武, 夏志东, 等. BGA焊球表面状态与微观结构关系的研究[J]. 稀有金属材料与工程, 2008, 37(6): 1092-1094.
[49] Wang T J, Lin J, Guo X Y, et al. A new method for producing uniform droplets by continuous-ink-jet technology[J]. Review of Scientific Instruments, 2018, 89(8): 0850081-0850086.
[50] Wang T J, Lin J, Lei Y P, et al. Dominant factors to produce single droplet per cycle using drop-on-demand technology driven by pulse electromagnetic force[J]. Vacuum, 2018, 156: 128-134.
[51] Wang T J, Lin J, Lei Y P, et al. Droplets generator: Formation and control of main and satellite droplets[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558: 303-312.
[52] Wang T J, Lin J, Lei Y P, et al. Research on the droplets formation of gallium based eutectic alloys based on the mode of pulse electromagnetic force[J]. Vacuum, 2019, 163: 158-163.
[53] Gilani N, Aboulkhair N T, Simonelli M, et al. From impact to solidification in drop-on-demand metal additive manufacturing using MetalJet[J]. Additive Manufacturing, 2022, 55: 102827.
[54] Simonelli M, Aboulkhair N, Rasa M, et al. Towards digital metal additive manufacturing via high-temperature drop-on-demand jetting[J]. Additive Manufacturing, 2019, 30: 100930.
[55] 朱兴晨. 气动式金属微滴按需喷射过程数值模拟与实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
[56] Zhong S Y, Qi L H, Luo J, et al. Effect of process parameters on copper droplet ejecting by pneumatic dropon-demand technology[J]. Journal of Materials Processing Technology, 2014, 214(12): 3089-3097.
[57] Moqadam S I, Mädler L, Ellendt N. Microstructure adjustment of spherical micro-samples for high-throughput analysis using a drop-on-demand droplet generator [J]. Materials, 2019, 12(22): 3769.
[58] Moqadam S I, Mädler L, Ellendt N. A High temperature drop-on-demand droplet generator for metallic Melts[J]. micromachines, 2019, 10(7): 477.
[59] Yi H, Qi L H, Luo J, et al. Direct fabrication of metal tubes with high-quality inner surfaces via droplet deposition over soluble cores[J]. Journal of Materials Processing Technology, 2019, 264: 145-154.
[60] 舒霞云. 气动膜片式金属微滴喷射理论与实验研究[D]. 武汉: 华中科技大学, 2009.
[61] 肖峻峰. 气动膜片式微滴喷射系统研究[D]. 武汉: 华中科技大学, 2009.
[62] Zhao D K, Zhou H Z, Wang Y F, et al. Drop-on-demand (DOD) inkjet dynamics of printing viscoelastic conductive ink[J]. Additive Manufacturing, 2021, 48: 102451.
[63] Amirzadeh A, Raessi M, Chandra S. Producing molten metal droplets smaller than the nozzle diameter using a pneumatic drop-on-demand generator[J]. Experimental Thermal and Fluid Science, 2013, 47: 26-33.
[64] Si T, Li F, Yin X Y, et al. Modes in flow focusing and instability of coaxial liquid-gas jets[J]. Journal of Fluid Mechanics, 2009, 629: 1-23.
[65] 穆恺, 司廷. 毛细流动聚焦的实验方法及过程控制[J]. 实验流体力学, 2020, 34(2): 46-56.
[66] 司廷, 尹协振. 流动聚焦研究进展及其应用[J]. 科学通报, 2011, 56(8): 537-546.
[67] 康鹏, 郭鉴锋, 穆恺, 等. 流动聚焦中液体锥形形态和流动结构实验研究[J]. 实验流体力学, 2022, 36(2): 74-81.
[68] 李帅兵, 司廷. 射流破碎的线性不稳定性分析方法[J]. 空气动力学学报, 2019, 37(3): 356-372.
[69] 司廷, 李广滨, 尹协振. 流动聚焦及射流不稳定性[J]. 力学进展, 2017, 47: 201706.
[70] 司廷. 流动聚焦的实验和理论研究[D]. 合肥: 中国科学技术大学, 2009.
[71] 司廷, 刘志勇, 尹协振. 流动聚焦中锥形和射流直径影响因素的实验研究[J]. 实验流体力学, 2008, 22(1): 21-26.
[72] 司廷, 刘志勇, 尹协振. 流动聚焦实验[J]. 力学季刊, 2007, 28(4): 533-538.
[73] Hara K, Kurashima Y, Hashimoto N, et al. Optimization for chip stack in 3-D packaging[J]. IEEE Transactions on Advanced Packaging, 2005, 28(3): 367-376.
[74] Yamada H, Togasaki T, Kimura M, et al. High-density 3-D packaging technology based on the sidewall interconnection method and its application for CCD microcamera visual inspection system[J]. IEEE Transactions on Advanced Packaging, 2003, 26(2): 113-121.
[75] Wang C P, Liu X J, Ohnuma I, et al. Formation of immiscible alloy powders with egg-type microstructure[J]. Science, 2002, 297(5583): 990-993.
[76] 董伟, 孟瑶, 许富民, 等. 基于单分散逐液滴雾化法制备锡合金微细球形金属粉末[J]. 材料工程, 2020, 48(9): 124-131.
[77] Mu B Y, Xu Y N, Xu J C, et al. Inkjet direct printing approach for flexible electronic[J]. Results in Engineering, 2022, 14: 100466.
[78] Zhang T Y, Wang X L, Li T J, et al. Fabrication of flexible copper-based electronics with high-resolution and high-conductivity on paper via inkjet printing[J]. Journal of Materials Chemistry C, 2014, 2(2): 286-294.
[79] Xu Y, Qi F J, Gao X Y, et al. Direct droplet writing-A novel droplet-punching capillary-splitting 3D printing method for highly viscous materials[J]. Procedia Manufacturing, 2021, 53: 472-483.
[80] Li K, Liu J K, Chen W S, et al. Controllable printing droplets on demand by piezoelectric inkjet: Applications and methods[J]. Microsystem Technologies, 2018, 24(2): 879-889.
[81] 桑瑞娟. UV喷墨3D打印木材研究现状与发展前景[J]. 林业工程学报, 2020, 5(6): 20-28.
[82] Lee T M, Kang T G, Yang J S, et al. 3D metal microstructure fabrication using a Molten Metal DOD Inkjet System[C]//Proceedings of TRANSDUCERS 2007-2007 International Solid-State Sensors, Actuators and Microsystems Conference. Piscataway, NJ: IEEE, 2007: 1637-1640.
[83] Derby B. Additive manufacture of ceramics components by inkjet printing[J]. Engineering, 2015, 1(1): 113-123.
[84] 韩县伟, 张洪武, 罗洪艳, 等. 基于微流控液滴形成技术的聚乙烯醇微球制备[J]. 分析化学, 2018, 46(8): 1269-1274.
[85] 袁景. 多孔β-磷酸三钙骨组织工程支架负载抗结核药物缓释系统的3D打印制备及初步研究[D]. 兰州: 甘肃中医学院, 2015.
[86] 纪闯. 高粘度生物材料的压电式微喷射3D打印关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[87] 时佳. 压电式按需滴化微喷射生物3D打印技术的研究与优化[D]. 沈阳: 东北大学, 2019.
Outlines

/