Efficient carbon fixation by chemoautotrophic bacteria in bioreactor: Challenges, strategies and application prospects

Expand
  • 1. State Key Laboratory of Pollution Control and Resource Research, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

    2. College of Civil Engineering and Architecture, Xinjiang University, Urumqi 830017, China

Received date: 2024-09-12

  Revised date: 2024-09-29

  Online published: 2024-10-21

Abstract

Biological carbon fixation is crucial to the Earth's carbon cycle and is one of the effective ways to transform CO2 and manage carbon emissions. Chemoautotrophs, with their unique metabolic strategies and environmental adaptability, play an important role in this process. They are able to convert CO2 into valuable organic products, solving the problem of limited CO2 utilization. However, the carbon fixation potential of chemoautotrophs in controlled systems has not been fully explored. This review illustrates the possible challenges of stable culture of chemoautotrophic bacteria in bioreactor. Based on this, a series of physical, chemical and biological methods are proposed to regulate the carbon metabolism of chemoautotrophic bacteria and improve their carbon fixation efficiency. Further, the application prospects of chemoautotrophic carbon fixation in controlled systems are expected, including improving the primary productivity of natural ecosystems, reducing carbon emissions in specific sites, and producing high-value microbial by-products. This review highlights the advantages and challenges of these applications, providing important insights into carbon capture, fixation and conversion by chemoautotrophs.

Cite this article

ZHAO Xiaodi, XIE Li, WANG Lei .

Efficient carbon fixation by chemoautotrophic bacteria in bioreactor: Challenges, strategies and application prospects[J]. Science & Technology Review, 0 : 1 . DOI: 10.3981/j.issn.1000-7857.2024.09.01295

References

[1] 蔡韬, 刘玉万, 朱蕾蕾, . 二氧化碳人工生物转化[J]. 生物工程学报, 2022, 38(11): 4101-4114.

[2] Kumar M, Morya R, Gnansounou E, et al. Characterization of carbon dioxide concentrating chemolithotrophic bacterium Serratia sp. ISTD04 for production of biodiesel[J]. Bioresource Technology, 2017, 243: 893-897.

[3] Hicks N, Vik U, Taylor P, et al. Using prokaryotes for carbon capture storage[J]. Trends in Biotechnology, 2017, 35(1): 22-32.

[4] Beudeker R F, Gottschal J C, Kuenen J G. Reactivity versus flexibility in thiobacilli[J]. Antonie Van Leeuwenhoek, 1982, 48(1): 39-51.

[5] Liu X T, Li L Q, Zhao G, et al. Optimization strategies for CO2 biological fixation[J]. Biotechnology Advances, 2024, 73: 108364.

[6] 王佳, 赵晓迪, 胡佳俊, . 非光合自养微生物固定CO2的影响因素及增效策略[J]. 上海大学学报(自然科学版), 2024, 30(2): 191-207.

[7] Esparza M, Jedlicki E, González C, et al. Effect of CO2concentration on uptake and assimilation of inorganic carbon in the extreme acidophile Acidithiobacillus ferrooxidans[J]. Frontiers in Microbiology, 2019, 10: 603.

[8] García G M, Márquez G M A, Moreno H C X. Characterization of bacterial diversity associated with calcareous deposits and drip-waters, and isolation of calcifying bacteria from two Colombian mines[J]. Microbiological Research, 2016, 182: 21-30.

[9] Labrenz M, Jost G, Pohl C, et al. Impact of different in vitro electron donor/acceptor conditions on potential chemolithoautotrophic communities from marine pelagic redoxclines[J]. Applied and Environmental Microbiology, 2005, 71(11): 6664-6672.

[10] Lauterbach L, Liu J, Horch M, et al. The Hydrogenase Subcomplex of the NAD+-Reducing[NiFe]Hydrogenase from Ralstonia eutrophaInsights into Catalysis and Redox Interconversions[J]. European Journal of Inorganic Chemistry, 2011, 2011(7): 1067-1079.

[11] Hu J J, Wang L, Zhang S P, et al. Optimization of electron donors to improve CO2 fixation efficiency by a non-photosynthetic microbial community under aerobic condition using statistical experimental design[J]. Bioresource Technology, 2010, 101(18): 7062-7067.

[12] Wu S, Xi X F, Fu X H, et al. Mixed electron donors synergistically enhance CO2 fixation of non-photosynthetic microorganism communities through optimizing community structure to promote cbb gene transcription[J]. Environmental Science and Pollution Research International, 2021, 28(13): 16368-16379.

[13] Hu J J, Wang L, Zhang S P, et al. Inhibitory effect of organic carbon on CO2 fixing by non-photosynthetic microbial community isolated from the ocean[J]. Bioresource Technology, 2011, 102(14): 7147-7153.

[14] Aquino S F, Stuckey D C. Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds[J]. Water Research, 2004, 38(2): 255-266.

[15] Guo J F, Xiao H H, Zhang J B, et al. Characterization of highly stable biochar and its application for removal of phenol[J]. Biomass Conversion and Biorefinery, 2024, 14(12): 13311-13321.

[16] Liang F Y, Englund E, Lindberg P, et al. Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio[J]. Metabolic Engineering, 2018, 46: 51-59.

[17] Ishikawa C, Hatanaka T, Misoo S, et al. Functional incorporation of Sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice[J]. Plant Physiology, 2011, 156(3): 1603-1611.

[18] Bar-Even A, Noor E, Lewis N E, et al. Design and analysis of synthetic carbon fixation pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8889-8894.

[19] Schwander T, Schada von Borzyskowski L, Burgener S, et al. A synthetic pathway for the fixation of carbon dioxide in vitro[J]. Science, 2016, 354(6314): 900-904.

[20] Lu X Y, Liu Y W, Yang Y Q, et al. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design[J]. Nature Communications, 2019, 10(1): 1378.

[21] 陶雨萱, 郭亮, 高聪, . 代谢工程改造微生物固定二氧化碳研究进展[J]. 化工进展, 2023, 42(1): 40-52.

[22] Xiao M Y, Zhu X N, Bi C H, et al. Improving succinate productivity by engineering a cyanobacterial CO2 concentrating system (CCM) in Escherichia coli[J]. Biotechnology Journal, 2017, 12(9). DOI: 10.1002/biot.201700199.

[23] Li T P, Jiang Q Y, Huang J F, et al. Reprogramming bacterial protein organelles as a nanoreactor for hydrogen production[J]. Nature Communications, 2020, 11(1): 5448.

[24] Ataeian M, Liu Y H, Canon-Rubio K A, et al. Direct capture and conversion of CO2 from air by growing a cyanobacterial consortium at pH up to 11.2[J]. Biotechnology and Bioengineering, 2019, 116(7): 1604-1611.

[25] Leung D Y C, Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443.

[26] 廖昌建, 张可伟, 王晶, . 直接空气捕集二氧化碳技术研究进展[J]. 化工进展, 2024, 43(4): 2031-2048.

[27] Sillman J, Nygren L, Kahiluoto H, et al. Bacterial protein for food and feed generated via renewable energy and direct air capture of CO2: Can it reduce land and water use?[J]. Global Food Security, 2019, 22: 25-32.

[28] 徐瑛, 孙永明, 袁振宏, . 生物燃气生物脱硫技术研究进[J]. 应用与环境生物学报, 2014, 20(2): 328-335.

[29] Wang Z Y, Cheng J, Zhang X D, et al. Metabolic pathways of Chlorella sp. cells induced by exogenous spermidine against nitric oxide damage from coal-fired flue gas[J]. Bioresource Technology, 2021, 328: 124827.

[30] Wang Z Y, Cheng J, Zhang X D, et al. Spermidine protects Chlorella sp. from oxidative damage caused by SO2 in flue gas from coal-fired power plants[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(40): 15179-15188.

[31] Bao Y L, Liu M, Wu X, et al. In situ carbon supplementation in large-scale cultivations of Spirulina platensis in open raceway pond[J]. Biotechnology and Bioprocess Engineering, 2012, 17(1): 93-99.

[32] Da Rosa G M, Moraes L, da Rosa Andrade Zimmermann de Souza M, et al. Spirulina cultivation with a CO2 absorbent: Influence on growth parameters and macromolecule production[J]. Bioresource Technology, 2016, 200: 528-534.

[33] Patel A K, Singhania R R, Chen C W, et al. Advances in micro- and nano bubbles technology for application in biochemical processes[J]. Environmental Technology & Innovation, 2021, 23: 101729.

[34] Guo J F, Wang X Y, Li T Z, et al. Effect of micro-nanobubbles with different gas sources on the growth and metabolism of chemoautotrophic microorganisms[J]. Process Biochemistry, 2023, 126: 117-124.

[35] Liu Y Q, Tu X H, Xu Q, et al. Engineered monoculture and co-culture of methylotrophic yeast for de novo production of monacolin J and lovastatin from methanol[J]. Metabolic Engineering, 2018, 45: 189-199.

[36] Wang Y N, Wang L, Shan Y N, et al. Optimization of inorganic carbon sources to improve the carbon fixation efficiency of the non-photosynthetic microbial community with different electron donors[J]. Environmental Technology, 2015, 36(9-12): 1246-1255.

[37] Tan J P, Luthfi A A I, Manaf S F A, et al. Incorporation of CO2 during the production of succinic acid from sustainable oil palm frond juice[J]. Journal of CO2 Utilization, 2018, 26: 595-601.

[38] Zhang S W, Wang Y N, Wang L, et al. Role of electron donor in CO2 fixation of chemoautotrophic bacteria and its preconditions: Verification in Alcaligenes hydrogenophilus[J]. Enzyme and Microbial Technology, 2018, 118: 37-43.

[39] Di Capua F, Pirozzi F, Lens P N L, et al. Electron donors for autotrophic denitrification[J]. Chemical Engineering Journal, 2019, 362: 922-937.

[40] Sakimoto K K, Wong A B, Yang P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77.

[41] Zhang R T, He Y, Yi J, et al. Proteomic and metabolic elucidation of solar-powered biomanufacturing by bio-abiotic hybrid system[J]. Chem, 2020, 6(1): 234-249.

[42] Li Z D, Xiong W, Tremolet de Villers B J, et al. Extracellular electron transfer across bio-nano interfaces for CO2 electroreduction[J]. Nanoscale, 2021, 13(2): 1093-1102.

[43] Zhang S W, Wang L, Fu X H, et al. A continuous flow membrane bio-reactor releases the feedback inhibition of self-generated free organic carbon on cbb gene transcription of a typical chemoautotrophic bacterium to improve its CO2 fixation efficiency[J]. Science of the Total Environment, 2021, 761: 143186.

[44] Wan B Y, Patel M, Zhou G, et al. Robust platform for inline Raman monitoring and control of perfusion cell culture[J]. Biotechnology and Bioengineering, 2024, 121(5): 1688-1701.

[45] Punia Bangar S, Suri S, Trif M, et al. Organic acids production from lactic acid bacteria: A preservation approach[J]. Food Bioscience, 2022, 46: 101615.

[46] Fuchs C, Köster D, Wiebusch S, et al. Scale-up of dialysis fermentation for high cell density cultivation of Escherichia coli[J]. Journal of Biotechnology, 2002, 93(3): 243-251.

[47] Zhao X D, Liu Y D, Xie L, et al. Biochar promotes microbial CO2 fixation by regulating feedback inhibition of metabolites[J]. Bioresource Technology, 2024, 406: 130990.

[48] Kerckhof F M, Sakarika M, Van Giel M, et al. From biogas and hydrogen to microbial protein through co-cultivation of methane and hydrogen oxidizing bacteria[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 733753.

[49] Hu X N, Vandamme P, Boon N. Co-cultivation enhanced microbial protein production based on autotrophic nitrogen-fixing hydrogen-oxidizing bacteria[J]. Chemical Engineering Journal, 2022, 429: 132535.

[50] Burmølle M, Johnsen K, Abu Al-Soud W, et al. The presence of embedded bacterial pure cultures in agar plates stimulate the culturability of soil bacteria[J]. Journal of Microbiological Methods, 2009, 79(2): 166-173.

[51] Acosta N, Sakarika M, Kerckhof F M, et al. Microbial protein production from methane via electrochemical biogas upgrading[J]. Chemical Engineering Journal, 2020, 391: 123625.

[52] Nanba K, King G M, Dunfield K. Analysis of facultative lithotroph distribution and diversity on volcanic deposits by use of the large subunit of ribulose 1, 5-bisphosphate carboxylase/oxygenase[J]. Applied and Environmental Microbiology, 2004, 70(4): 2245-2253.

[53] Tourova T P, Kovaleva O L, Sorokin D Y, et al. Ribulose-1, 5-bisphosphate carboxylase/oxygenase genes as a functional marker for chemolithoautotrophic halophilic sulfur-oxidizing bacteria in hypersaline habitats[J]. Microbiology, 2010, 156(Pt 7): 2016-2025.

[54] Kong W D, Ream D C, Priscu J C, et al. Diversity and expression of RubisCO genes in a perennially ice-covered Antarctic lake during the polar night transition[J]. Applied and Environmental Microbiology, 2012, 78(12): 4358-4366.

[55] 焦念志, 戴民汉, 翦知湣, . 海洋储碳机制及相关生物地球化学过程研究策略[J]. 科学通报, 2022, 67(15): 1600-1606.

[56] Baltar F, Arístegui J, Gasol J M, et al. Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic[J]. Limnology and Oceanography, 2009, 54(1): 182-193.

[57] Nguyen T T H, Zakem E J, Ebrahimi A, et al. Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates[J]. Nature Communications, 2022, 13(1): 1657.

[58] Middelburg J J. Chemoautotrophy in the ocean[J]. Geophysical Research Letters, 2011, 38(24). DOI:10.1029/2011GL049725.

[59] 程澳琪, 康卫华, 李为, . 岩溶区土壤微生物驱动的自养固碳过程与机制研究进展[J]. 微生物学报, 2021, 61(6): 1525-1535.

[60] Liu Z, Sun Y F, Zhang Y Q, et al. Metagenomic and 13C tracing evidence for autotrophic atmospheric carbon absorption in a semiarid desert[J]. Soil Biology and Biochemistry, 2018, 125: 156-166.

[61] Zhao K, Kong W D, Wang F, et al. Desert and steppe soils exhibit lower autotrophic microbial abundance but higher atmospheric CO2 fixation capacity than meadow soils[J]. Soil Biology and Biochemistry, 2018, 127: 230-238.

[62] 赵康, 张磊, 李凯凯, . 干旱区土壤自养微生物研究进展[J]. 中国沙漠, 2022, 42(5): 177-186.

[63] Cuéllar-Franca R M, Azapagic A. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts[J]. Journal of CO2 Utilization, 2015, 9: 82-102.

[64] Mikkelsen M, Jørgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide[J]. Energy & Environmental Science, 2010, 3(1): 43-81.

[65] Koytsoumpa E I, MagiriSkouloudi D, Karellas S, et al. Bioenergy with carbon capture and utilization: A review on the potential deployment towards a European circular bioeconomy[J]. Renewable and Sustainable Energy Reviews, 2021, 152: 111641.

[66] Singh J, Thakur I S. Evaluation of cyanobacterial endolith Leptolyngbya sp. ISTCY101, for integrated wastewater treatment and biodiesel production: A toxicological perspective[J]. Algal Research, 2015, 11: 294-303.

[67] Bharti R K, Srivastava S, Thakur I S. Extraction of extracellular lipids from chemoautotrophic bacteria Serratia sp. ISTD04 for production of biodiesel[J]. Bioresource Technology, 2014, 165: 201-204.

[68] Mishra S, Pahari S, Siva K, et al. Investigation on CO2 bio-mitigation using Halomonas stevensii in laboratory scale bioreactor: Design of downstream process and its economic feasibility analysis[J]. Journal of CO2 Utilization, 2018, 24: 274-286.

[69] 夏季达沃斯论坛发布解决全球挑战的十大新兴技术[J]. 信息系统工程, 2024(7): 2.

[70] Jones S W, Karpol A, Friedman S, et al. Recent advances in single cell protein use as a feed ingredient in aquaculture[J]. Current Opinion in Biotechnology, 2020, 61: 189-197.

[71] Liu C, Colón B C, Ziesack M, et al. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis[J]. Science, 2016, 352(6290): 1210-1213.

[72] Yu J. Bio-based products from solar energy and carbon dioxide[J]. Trends in Biotechnology, 2014, 32(1): 5-10.

[73] 何环, 夏金兰, 彭安安, . 嗜酸硫氧化细菌作用下元素硫化学形态的研究进展[J]. 中国有色金属学报, 2008, 18(6): 1143-1151.





Outlines

/