Science and Technology Humanities

A wise and short life of Roch, the gifted mathematician

  • DUAN Yuerui ,
  • WANG Shuhong
Expand
  • School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, China

Received date: 2024-05-12

  Revised date: 2024-08-17

  Online published: 2024-10-30

Abstract

Famous for the Riemann-Roch theorem, Gustav Roch, a renowned German mathematician and physicist, has promoted the development of algebraic geometry. Based on literature study and historical analysis, in this paper, Roch's life experience, major achievements and the related influence are reviewed. In his whole life, Roch demonstrated diligence and entrepreneurial spirit. He was brave to explore and persistent in scientific research, serious and responsible in teaching, and willing to serve as a ladder. His short life was full of infinite wisdom.

Cite this article

DUAN Yuerui , WANG Shuhong . A wise and short life of Roch, the gifted mathematician[J]. Science & Technology Review, 2024 , 42(24) : 128 -135 . DOI: 10.3981/j.issn.1000-7857.2023.05.00721

References

[1] Gray J J. The Riemann-Roch theorem and geometry, 1854-1914[J]. Documenta Mathematica, 1998, 3: 811- 822.
[2] Goebel M, Schlosser H, Sekatzek M. Gustav Roch (1839- 1866) [EB/OL]. (1999-05-06) [2023-04-23]. http://www. mathematik.uni-halle.de/history/roch/index.html.
[3] Patrick P P. What is the genus? [M]. Cham: Springer, 2016: 43-166.
[4] 胡作玄. 近代数学史[M]. 济南: 山东教育出版社, 2006: 526-532.
[5] Kline M. Mathematical thought from ancient to modern times[M]. New York: Oxford University Press, 1972: 997-1116.
[6] Bottazzini U, Gray J J. Hidden harmony: Geometric fantasies[M]. New York: Springer, 2013: 260-739.
[7] Riemann B. Theorie der Abel'schen functionen[J]. Journal Für Die Reine und Angewandte Mathematik, 1857, 54: 115-155.
[8] Roch G. Ueber die Anzahl der willkürlichen constanten in algebraischen functionen[J]. Journal für die reine und angewandte Mathematik, 1865, 64: 372-376.
[9] Brill A, Noether M. Ueber die algebraischen Functionen und ihre Anwendung in der Geometrie[J]. Mathematische Annalen, 1874, 7(2): 269-310.
[10] Dedekind R, Weber H. Theorie der algebraischen functionen einer veränderlichen[J]. Journal Fur Die Reine und Angewandte Mathematik, 1882, 92: 181-290.
[11] Kodaira K. The theorem of Riemann-roch on compact analytic surfaces[J]. American Journal of Mathematics, 1951, 73(4): 813-875.
[12] Hirzebruch F. Arithmetic Genera and the theorem of Riemann-roch for algebraic varieties[J]. Proceedings of the National Academy of Sciences of the United States of America, 1954, 40(2): 110-114.
[13] Borel A, Serre J P. Le théorème de Riemann-Roch[J]. Bulletin de la Société mathématique de France, 1958, 86: 97-136.
[14] Atiyah M F, Singer I M. The index of elliptic operators on compact manifolds[J]. Bulletin of the American Mathematical Society, 1963, 69(3): 422-433.
[15] Roch G. Ueber Theta-functionen vielfacher argumente [J]. Journal für die reine und angewandte Mathematik, 1866, 66: 177-184.
[16] Del Centina A. Weierstrass points and their impact in the study of algebraic curves: A historical account from the "Lückensatz" to the 1970s[J]. Annali dell'Università di Ferrara, 2008, 54: 37-59.
[17] O'Connor J J, Robertson E F. Gustav Roch[EB/OL]. (2006-03-01) [2023-04-23]. https://mathshistory. st-andrews.ac.uk/Biographies/Roch.
Outlines

/