[1] Huang X, Ding A J, Gao J, et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China[J]. National Science Review, 2021, 8(2): 51-59.
[2] 中华人民共和国生态环境部. 2023中国生态环境状况公 报[R/OL]. (2024-06-05) [2024-06-13]. https://www.mee.gov.cn/hjzl/sthjz.
[3] Zhang Q, Zheng Y X, Tong D, et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(49): 24463-24469.
[4] Yu C Y, Kang J J, Teng J, et al. Does coal-to-gas policy reduce air pollution? Evidence from a quasi-natural experiment in China[J]. Science of the Total Environment, 2021, 773: 144645.
[5] Zheng B, Tong D, Li M, et al. Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions[J]. Atmospheric Chemistry and Physics, 2018, 18(19): 14095-14111.
[6] Xing J, Lu X, Wang S X, et al. The quest for improved air quality may push China to continue its CO2 reduction beyond the Paris Commitment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(47): 29535-29542.
[7] 自然资源保护协会. 中国散煤综合治理研究报告2020[R/OL]. (2020-09-23) [2024-06-13]. http://www.nrdc.cn/information/informationinfo?id=292&cook=2.
[8] Shindell D, Smith C J. Climate and air-quality benefits of a realistic phase-out of fossil fuels[J]. Nature, 2019, 573(7774): 408-411.
[9] Agee M D, Atkinson S E, Crocker T D, et al. Non-separable pollution control: Implications for a CO2 emissions cap and trade system[J]. Resource and Energy Economics, 2014, 36(1): 64-82.
[10] Cheng J, Tong D, Zhang Q, et al. Pathways of China's PM2.5 air quality 2015-2060 in the context of carbon neutrality[J]. National Science Review, 2021, 8(12): 63-73.
[11] Shi X R, Zheng Y X, Lei Y, et al. Air quality benefits of achieving carbon neutrality in China[J]. Science of the Total Environment, 2021, 795: 148784.
[12] Yang G F, Liu Y H, Li X N. Spatiotemporal distribution of ground-level ozone in China at a city level[J]. Scientific Reports, 2020, 10(1): 7229.
[13] Guo X R, Shen Y Q, Liu W W, et al. Estimation and prediction of industrial VOC emissions in Hebei Province, China[J]. Atmosphere, 2021, 12(5): 530.
[14] 钟美芳, 李智博, 黄皓旻, 等.“双碳”背景下工业源VOCs排放特征与减排潜力研究[J]. 环境科学学报, 2022, 42(10): 12-25.
[15] 刘春景, 吕建燚, 赵汶畅, 等. 两种模式下中国未来发电行业发展情景及其环境效益分析[J]. 环境科学, 2022, 43(7): 3375-3385.
[16] 徐北瑶, 王体健, 李树, 等.“双碳”目标对我国未来空气污染和气候变化的影响评估[J]. 科学通报, 2022, 67(8): 784-794.
[17] Liu Z Y, Zhang Y, Wang Y H, et al. Cost-effectiveness of NOx and VOC co-operative controls for PM2.5 and O3 mitigation in the context of China's carbon neutrality[J]. Environmental Science & Technology Letters, 2023, 10(11): 1109-1116.
[18] Qu C F, Yang X, Zhang D, et al. Estimating health cobenefits of climate policies in China: An application of the regional emissions-air quality-climate-health (reach) framework[J]. Climate Change Economics, 2020, 11(3): 2041004.
[19] Yue H B, He C Y, Huang Q X, et al. Stronger policy required to substantially reduce deaths from PM2.5 pollution in China[J]. Nature Communications, 2020, 11(1): 1462.
[20] Wang Y S, Xie M J, Wu Y Z, et al. Ozone-related Cobenefits of China's Climate mitigation Policy[J]. Resources, Conservation and Recycling, 2022, 182: 106288.
[21] Cheng J, Tong D, Liu Y, et al. A synergistic approach to air pollution control and carbon neutrality in China can avoid millions of premature deaths annually by 2060[J]. One Earth, 2023, 6(8): 978-989.
[22] Tong D, Cheng J, Liu Y, et al. Dynamic projection of anthropogenic emissions in China: Methodology and 2015-2050 emission pathways under a range of socio-economic, climate policy, and pollution control scenarios[J]. Atmospheric Chemistry and Physics, 2020, 20(9): 5729-5757.
[23] Zhang G X, Yang Y, Su B, et al. Electricity production, power generation structure, and air pollution: A monthly data analysis for 279 cities in China (2015-2019)[J]. Energy Economics, 2023, 120: 106597.
[24] Jiang P, Alimujiang A, Dong H J, et al. Detecting and understanding synergies and co-benefits of low carbon development in the electric power industry in China[J]. Sustainability, 2019, 12(1): 297.
[25] 中华人民共和国国家统计局. 中国统计年鉴2016[M]. 北京: 中国统计出版社, 2016.
[26] 中华人民共和国环境保护部.《中国环境统计年报2015》[M]. 北京: 中国环境出版社, 2016.
[27] Zhang S H, An K X, Li J, et al. Incorporating health cobenefits into technology pathways to achieve China's 2060 carbon neutrality goal: A modelling study[J]. The Lancet Planetary Health, 2021, 5(11): e808-e817.
[28] Cai W J, Hui J X, Wang C, et al. The Lancet Countdown on PM2.5 pollution-related health impacts of China's projected carbon dioxide mitigation in the electric power generation sector under the Paris Agreement: A modelling study[J]. The Lancet Planetary Health, 2018, 2(4): e151-e161.
[29] Liu J, Mauzerall D L, Chen Q, et al. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(28): 7756-7761.
[30] Ebenstein A, Fan M Y, Greenstone M, et al. New evidence on the impact of sustained exposure to air pollution on life expectancy from China's Huai River Policy [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(39): 10384-10389.
[31] 北方地区冬季清洁取暖规划(2017—2021年)[R]. 北京: 发展改革委, 能源局, 财政部, 2017.
[32] Zhang M J, Gao L, Wang Q D, et al. Methane leakage measurement of natural gas heating boilers and greenhouse gas emissions accounting of "coal-to-gas" transition for residential heating in rural Beijing[J]. Environmental Science & Technology Letters, 2023, 10(1): 93-97.
[33] Zhou M, Liu H X, Peng L Q, et al. Environmental benefits and household costs of clean heating options in Northern China[J]. Nature Sustainability, 2022, 5(4): 329-338.
[34] Wang S W, Su H, Chen C C, et al. Natural gas shortages during the "coal-to-gas" transition in China have caused a large redistribution of air pollution in winter 2017[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(49): 31018-31025.
[35] Xing M, Liu W G, Li X, et al. Vapor isotopic evidence for the worsening of winter air quality by anthropogenic combustion-derived water[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(52): 33005-33010.
[36] Wu J R, Bei N F, Liu W G, et al. Why is the air humid during wintertime heavy haze days in Beijing? [J]. Science of the Total Environment, 2022, 853: 158597.
[37] 空气质量评估报告(九)[R]. 北京: 北京大学统计科学中心, 北京大学光华管理学院, 大数据分析与应用技术国家工程实验室, 2022.
[38] Bo X, Jia M, Xue X D, et al. Effect of strengthened standards on Chinese ironmaking and steelmaking emissions [J]. Nature Sustainability, 2021, 4(9): 811-820.
[39] Huang D, Dinga C D, Tao Y, et al. Quantitative analysis of net-zero transition pathways and synergies in China's iron and steel industry[J]. Renewable and Sustainable Energy Reviews, 2023, 183: 113495.
[40] Tang L, Ruan J H, Bo X, et al. Plant-level real-time monitoring data reveal substantial abatement potential of air pollution and CO2 in China's cement sector[J]. One Earth, 2022, 5(8): 892-906.
[41] Wang K L, Zheng L J, Zhang J Z, et al. The impact of promoting new energy vehicles on carbon intensity: Causal evidence from China[J]. Energy Economics, 2022, 114: 106255.
[42] Li S Y, Wang S X, Wu Q R, et al. Emission trends of air pollutants and CO2 in China from 2005 to 2021[J]. Earth System Science Data, 2023, 15(6): 2279-2294.
[43] Sun Q Q, Chen H, Long R Y, et al. Who will pay for the "bicycle cemetery"? Evolutionary game analysis of recycling abandoned shared bicycles under dynamic reward and punishment[J]. European Journal of Operational Research, 2023, 305(2): 917-929.
[44] Kern F, Peuckert J, Lange S, et al. Designing effective and acceptable policy mixes for energy transitions: Countering rebound effects in German industry[J]. Energy Research & Social Science, 2022, 90: 102680.