[1] IPCC. Summary for policymaker[R]//Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021.
[2] Allen M R, Frame D J, Huntingford C, et al. Warming caused by cumulative carbon emissions towards the trillionth tonne[J]. Nature, 2009, 458(7242): 1163-1166.
[3] Stocker B D, Roth R, Joos F, et al. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios[J]. Nature Climate Change, 2013, 3(7): 666-672.
[4] Zhu H H, Jiang Z H, Li L. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6[J]. Science Bulletin, 2021, 66(24): 2528-2537.
[5] Aihaiti A, Jiang Z H, Zhu L H, et al. Risk changes of compound temperature and precipitation extremes in China under 1.5℃ and 2℃ global warming[J]. Atmospheric Research, 2021, 264: 105838.
[6] Shi C, Jiang Z H, Chen W L, et al. Changes in temperature extremes over China under 1.5℃ and 2℃ global warming targets[J]. Advances in Climate Change Research, 2018, 9(2): 120-129.
[7] Guo X J, Huang J B, Luo Y, et al. Projection of precipitation extremes for eight global warming targets by 17 CMIP5 models[J]. Natural Hazards, 2016, 84(3): 2299-2319.
[8] UNFCCC. Adoption of the Paris Agreement[R]. Geneva: United Nations Office at Geneva SU, 2015.
[9] Zickfeld K, Herrington T. The time lag between a carbon dioxide emission and maximum warming increases with the size of the emission[J]. Environmental Research Letters, 2015, 10(3): 031001.
[10] You Q L, Jiang Z H, Yue X, et al. Recent frontiers of climate changes in East Asia at global warming of 1.5℃ and 2℃ [J]. NPJ Climate and Atmospheric Science, 2022, 5: 80.
[11] Sun Y, Zhang X B, Zwiers F W, et al. Rapid increase in the risk of extreme summer heat in Eastern China[J]. Nature Climate Change, 2014, 4(12): 1082-1085.
[12] 胡婷, 孙颖, 张学斌. 全球1.5和2℃温升时的气温和降水变化预估[J]. 科学通报, 2017, 62(26): 3098-3111.
[13] You Q L, Cai Z Y, Wu F Y, et al. Temperature dataset of CMIP6 models over China: Evaluation, trend and uncertainty[J]. Climate Dynamics, 2021, 57(1): 17-35.
[14] Wu F Y, You Q L, Zhang Z Y, et al. Changes and uncertainties of surface mean temperature over China under global warming of 1.5 and 2℃ [J]. International Journal of Climatology, 2021, 41(Suppl 1): 410-427.
[15] Wang G, Zhang Q, Yu H Q, et al. Double increase in precipitation extremes across China in a 1.5℃/2.0℃ warmer climate[J]. Science of the Total Environment, 2020, 746: 140807.
[16] Li H X, Chen H P, Wang H J, et al. Future precipitation changes over China under 1.5℃ and 2.0℃ global warming targets by using CORDEX regional climate models[J]. Science of the Total Environment, 2018, 640/641: 543-554.
[17] Zhang G W, Zeng G, Yang X Y, et al. Future changes in extreme high temperature over China at 1.5℃-5℃ global warming based on CMIP6 simulations[J]. Advances in Atmospheric Sciences, 2021, 38(2): 253-267.
[18] Li W, Jiang Z H, Zhang X B, et al. Additional risk in extreme precipitation in China from 1.5℃ to 2.0℃ global warming levels[J]. Science Bulletin, 2018, 63(4): 228-234.
[19] Chen H P, Sun J Q. Increased population exposure to extreme droughts in China due to 0.5℃ of additional warming[J]. Environmental Research Letters, 2019, 14(6): 064011.
[20] 徐北瑶, 王体健, 李树, 等.“双碳”目标对我国未来空气污染和气候变化的影响评估[J]. 科学通报, 2022, 67(8): 784-794.
[21] Chen J W, Cui H J, Xu Y Y, et al. Long-term temperature and sea-level rise stabilization before and beyond 2100: Estimating the additional climate mitigation contribution from China's recent 2060 carbon neutrality pledge[J]. Environmental Research Letters, 2021, 16(7): 074032.
[22] 邓荔, 朱欢欢, 江志红. 不同情景达到碳中和下中国区域气候变化的预估[J]. 大气科学学报, 2022, 45(3): 364-375.
[23] Zhang J T, You Q L. Avoidable heat risk under scenarios of carbon neutrality by mid-century[J]. Science of the Total Environment, 2023, 892: 164679.
[24] 杨晨辉, 王艳君, 苏布达, 等. SSP“双碳”路径下赣江流域径流变化趋势[J]. 气候变化研究进展, 2022, 18(2): 177-187.
[25] Gidden M J, Riahi K, Smith S J, et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century[J]. Geoscientific Model Development, 2019, 12(4): 1443-1475.
[26] O'Neill B C, Tebaldi C, van Vuuren D P, et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6[J]. Geoscientific Model Development, 2016, 9(9): 3461-3482.
[27] 张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况 与评 述[J]. 气候 变化 研究 进展 , 2019, 15(5): 519-525.
[28] Tebaldi C, Debeire K, Eyring V, et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6[J]. Earth System Dynamics, 2021, 12(1): 253-293.
[29] You Q L, Zhang Y Q, Xie X Y, et al. Robust elevation dependency warming over the Tibetan Plateau under global warming of 1.5℃ and 2℃ [J]. Climate Dynamics, 2019, 53(3): 2047-2060.
[30] You Q L, Chen D L, Wu F Y, et al. Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives[J]. Earth-Science Reviews, 2020, 210: 103349.
[31] Yao T D, Bolch T, Chen D L, et al. The imbalance of the Asian water tower[J]. Nature Reviews Earth & Environment, 2022, 3(10): 618-632.
[32] Yao T D, Thompson L, Chen D L, et al. Reflections and future strategies for Third Pole Environment[J]. Nature Reviews Earth & Environment, 2022, 3(10): 608-610.
[33] Ge J, Qiu B, Wu R Q, et al. Does dynamic downscaling modify the projected impacts of stabilized 1.5℃ and 2℃ warming on hot extremes over China? [J]. Geophysical Research Letters, 2021, 48(6): e2021GL092792.
[34] Huang J P, Yu H P, Dai A G, et al. Drylands face potential threat under 2℃ global warming target[J]. Nature Climate Change, 2017, 7: 417-422.
[35] Zhang M, Yu H P, King A D, et al. Greater probability of extreme precipitation under 1.5℃ and 2℃ warming limits over East-Central Asia[J]. Climatic Change, 2020, 162(2): 603-619.
[36] Guo L Y, Jiang Z H, Ding M, et al. Downscaling and projection of summer rainfall in Eastern China using a nonhomogeneous hidden Markov model[J]. International Journal of Climatology, 2019, 39(3): 1319-1330.