[1] 吕玉恒. 环境保护声屏障降噪效果分析与应用[C]//上海市老科学技术工作者协会学术年会. 上海: 上海市老科学技术工作者协会, 2012.
[2] 董晓冬. 城市环境噪声污染危害的研究进展[J]. 环境与发展, 2020, 32(5): 59-60.
[3] 毛兴中. 工程机械噪声控制技术[J]. 筑路机械与施工机械化, 2008, 25(4): 16-19.
[4] 蒋真平, 周守艳. 工程机械噪声与控制分析[J]. 建筑机械(上半月), 2007(4): 79-82.
[5] 刘静, 李梅莉, 孙金艳, 等. 天津市某工业区企业噪声危害现状与控制对策[J]. 中国工业医学杂志, 2014, 27(2): 87-89, 96.
[6] 于博雅, 马蕙. 石化企业工业噪声对绿色城市环境影响的实测分析[J]. 建筑节能, 2018, 46(1): 137-140.
[7] 阎瑞雪, 夏杰, 张荣, 等. 某轴承生产企业噪声作业工人对噪声危害和防护知识认知情况[J]. 中国职业医学, 2019, 46(4): 497-500.
[8] Biot M A, Willis D G. The elastic coefficients of the theory of consolidation[J]. Journal of Applied Mechanics, 1957, 24(4): 594-601.
[9] Delany M E, Bazley E N. Acoustical properties of fibrous absorbent materials[J]. Applied Acoustics, 1970, 3(2): 105-116.
[10] Miki Y. Acoustical properties of porous materials. Modifications of Delany-Bazley models[J]. Journal of the Acoustical Society of Japan, 1990, 11(1): 19-24.
[11] Berardi U. Determination through an inverse method of the acoustic impedance and the propagation constant for some natural fibers[C]//INTER-NOISE and NOISECON Congress and Conference Proceedings. Dubrovnik: Institute of Noise Control Engineering, 2015.
[12] Johnson D L, Koplik J, Dashen R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media[J]. Journal of Fluid Mechanics, 1987, 176: 379.
[13] Garai M, Pompoli F. A simple empirical model of polyester fibre materials for acoustical applications[J]. Applied Acoustics, 2005, 66(12): 1383-1398.
[14] Santoni A, Bonfiglio P, Fausti P, et al. Improving the sound absorption performance of sustainable thermal insulation materials: Natural hemp fibres[J]. Applied Acoustics, 2019, 150: 279-289.
[15] Caniato M, Kyaw Oo D’Amore G, Kaspar J, et al. Sound absorption performance of sustainable foam materials: Application of analytical and numerical tools for the optimization of forecasting models[J]. Applied Acoustics, 2020, 161: 107166.
[16] Ehsan S S, Berardi U, Taban E, et al. Natural fibrogranular composite as a novel sustainable sound-absorbing material[J]. Applied Acoustics, 2021, 181: 108157.
[17] An X Y, Fan H L, Zhang C Z. Elastic wave and vibration bandgaps in planar square metamaterial-based lattice structures[J]. Journal of Sound and Vibration, 2020, 475: 115292.
[18] 冯涛, 王晶, 刘斌, 等. 用传递矩阵法计算多层泡沫材料的法向吸声系数[J]. 机械设计与制造, 2012(2): 35-37.
[19] 杨梦露, 冯涛, 贾玉麒, 等. 空气背衬条件下泡沫材料法向吸声系数混合计算方法研究[J]. 噪声与振动控制, 2018, 38(2): 42-44, 76.
[20] 汪婕, 冯涛, 杨梦露, 等. 应用传递矩阵测量中间薄层材料声特性[J]. 声学技术, 2019, 38(3): 334-339.
[21] McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115-133.
[22] 张润, 王永滨. 机器学习及其算法和发展研究[J]. 中国传媒大学学报(自然科学版), 2016, 23(2): 10-18, 24.
[23] Gordon A D, Breiman L, Friedman J H, et al. Classification and regression trees[J]. Biometrics, 1984, 40(3): 874.
[24] Rumelhart D E, Hinton G E, Williams R J. Learning internal representations by error propagation[M]//Readings in Cognitive Science. Amsterdam: Elsevier, 1988: 399-421.
[25] Moody J, Darken C J. Fast learning in networks of locally-tuned processing units[J]. Neural Computation, 1989, 1(2): 281-294.
[26] Iannace G, Ciaburro G, Trematerra A. Modelling sound absorption properties of broom fibers using artificial neural networks[J]. Applied Acoustics, 2020, 163: 107239.
[27] Ciaburro G, Iannace G, Passaro J, et al. Artificial neural network-based models for predicting the sound absorption coefficient of electrospun poly(vinyl pyrrolidone)/silica composite[J]. Applied Acoustics, 2020, 169: 107472.
[28] Kumar S, Jin H, Lim K M, et al. Comparative analysis of machine learning algorithms on prediction of the sound absorption coefficient for reconfigurable acoustic meta-absorbers[J]. Applied Acoustics, 2023, 212: 109603.
[29] Ciaburro G, Iannace G. Membrane-type acoustic metamaterial using cork sheets and attached masses based on reused materials[J]. Applied Acoustics, 2022, 189: 108605.
[30] Liang L S, Guo W L, Zhang Y, et al. Radial basis function neural network for prediction of medium-frequency sound absorption coefficient of composite structure open-cell aluminum foam[J]. Applied Acoustics, 2020, 170: 107505.
[31] Luo Z H, Li T, Yan Y W, et al. Prediction of sound insulation performance of aramid honeycomb sandwich panel based on artificial neural network[J]. Applied Acoustics, 2022, 190: 108656.
[32] Roca D, Yago D, Cante J, et al. Computational design of locally resonant acoustic metamaterials[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 345: 161-182.
[33] Rao R V, Savsani V J, Vakharia D P. Teaching-Learning-based optimization: An optimization method for continuous non-linear large scale problems[J]. Information Sciences, 2012, 183(1): 1-15.
[34] Takezawa A, Yamamoto T, Zhang X P, et al. An objective function for the topology optimization of sound-absorbing materials[J]. Journal of Sound and Vibration, 2019, 443: 804-819.
[35] Park J H, Yang S H, Lee H R, et al. Optimization of low frequency sound absorption by cell size control and multiscale poroacoustics modeling[J]. Journal of Sound and Vibration, 2017, 397: 17-30.
[36] Chambers A T, Manimala J M, Jones M G. Design and optimization of 3D folded-core acoustic liners for enhanced low-frequency performance[J]. AIAA Journal, 2020, 58(1): 206-218.
[37] Gao N S, Luo D D, Cheng B Z, et al. Teaching-learning-based optimization of a composite metastructure in the 0~10 kHz broadband sound absorption range[J]. The Journal of the Acoustical Society of America, 2020, 148(2): EL125.
[38] Gao N S, Zhang Z C, Tang L L, et al. Optimal design of broadband quasi-perfect sound absorption of composite hybrid porous metamaterial using TLBO algorithm[J]. Applied Acoustics, 2021, 183: 108296.
[39] Zuo HW, Li J Z, Shen C, et al. Sound insulation performance of acoustic metamaterials based on attachable helmholtz resonators[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2022, 39(S1): 23-31.
[40] 冯涛, 王余华, 王晶, 等. 结构型声学超材料研究及应用进展[J]. 振动与冲击, 2021, 40(20): 150-157.
[41] Abbad A, Atalla N, Ouisse M, et al. Numerical and experimental investigations on the acoustic performances of membraned Helmholtz resonators embedded in a porous matrix[J]. Journal of Sound and Vibration, 2019, 459: 114873.
[42] Jena D P, Dandsena J, Jayakumari V G. Demonstration of effective acoustic properties of different configurations of Helmholtz resonators[J]. Applied Acoustics, 2019, 155: 371-382.
[43] Ma G C, Sheng P. Acoustic metamaterials: From local resonances to broad horizons[J]. Science Advances, 2016, 2(2): e1501595.
[44] Haberman M R, Guild M D. Acoustic metamaterials[J]. Physics Today, 2016, 69(6): 42-48.
[45] Mahesh K, Mini R S. Theoretical investigation on the acoustic performance of Helmholtz resonator integrated microperforated panel absorber[J]. Applied Acoustics, 2021, 178: 108012.
[46] 马大猷. 微穿孔板吸声结构的理论和设计[J]. 中国科学, 1975(1): 38-50.
[47] Xie S C, Wang D, Feng Z J, et al. Sound absorption performance of microperforated honeycomb metasurface panels with a combination of multiple orifice diameters [J]. Applied Acoustics, 2020, 158: 107046.
[48] Xie S C, Yang S C, Yang C X, et al. Sound absorption performance of a filled honeycomb composite structure [J]. Applied Acoustics, 2020, 162: 107202.
[49] 贾玉麒, 冯涛, 杨梦露, 等. 硅胶薄膜声学超材料单胞结构的隔声测量研究[J]. 功能材料, 2018, 49(1): 1108-1111, 1116.
[50] Lu Z B, Yu X, Lau S K, et al. Membrane-type acoustic metamaterial with eccentric masses for broadband sound isolation[J]. Applied Acoustics, 2020, 157: 107003.
[51] Zhou G J, Wu J H, Lu K, et al. Broadband low-frequency membrane-type acoustic metamaterials with multistate anti-resonances[J]. Applied Acoustics, 2020, 159:107078.
[52] Li H Z, Liu X C, Liu Q, et al. Sound insulation performance of double membrane-type acoustic metamaterials combined with a Helmholtz resonator[J]. Applied Acoustics, 2023, 205: 109297.
[53] Fiala L, Konrád P, Fořt J, et al. Application of ceramic waste in brick blocks with enhanced acoustic properties [J]. Journal of Cleaner Production, 2020, 261: 121185.
[54] Júnior O J S, Pinheiro M A S, Silva J J R, et al. Sound insulation of gypsum block partitions: An analysis of single and double walls[J]. Journal of Building Engineering, 2021, 39: 102253.
[55] Arjunan A. Targeted sound attenuation capacity of 3D printed noise cancelling waveguides[J]. Applied Acoustics, 2019, 151: 30-44.
[56] Islam S, Bhat G. Environmentally-friendly thermal and acoustic insulation materials from recycled textiles[J]. Journal of Environmental Management, 2019, 251: 109536.
[57] Asdrubali F, D’Alessandro F, Schiavoni S. A review of unconventional sustainable building insulation materials [J]. Sustainable Materials and Technologies, 2015, 4: 1-17.
[58] Chen S M, Jiang Y, Chen J, et al. The effects of various additive components on the sound absorption performances of polyurethane foams[J]. Advances in Materials Science and Engineering, 2015, 2015: 317561.
[59] Zhang X H, Qu Z G, He X C, et al. Experimental study on the sound absorption characteristics of continuously graded phononic crystals[J]. AIP Advances, 2016, 6(10): 105205.
[60] 刘杨, 霍又嘉, 杜元开, 等. 吸声材料制备、性能研究进展[J]. 功能材料, 2022, 53(2): 2073-2079.
[61] Baghban S A, Khorasani M, Sadeghi G M M. Acoustic damping flexible polyurethane foams: Effect of isocyanate index and water content on the soundproofing[J]. Journal of Applied Polymer Science, 2019, 136(15): e47363.
[62] Liu L, Chen Y J, Liu H Z, et al. A graphene oxide and functionalized carbon nanotube based semi-open cellular network for sound absorption[J]. Soft Matter, 2019, 15(10): 2269-2276.
[63] Shtrepi L, Astolfi A, Badino E, et al. More than just concrete: Acoustically efficient porous concrete with different aggregate shape and gradation[J]. Applied Sciences, 2021, 11(11): 4835.
[64] 王和平, 王飞, 吕玉恒. 降噪芯片-抗氧化发泡铝及其应用[C]//2014年全国环境声学学术会议论文集. 厦门:《声学技术》编辑部, 2014: 401-404.
[65] Yang X C, Shen X M, Bai P F, et al. Preparation and characterization of gradient compressed porous metal for high-efficiency and thin-thickness acoustic absorber[J]. Materials, 2019, 12(9): 1413.
[66] Soltani P, Taban E, Faridan M, et al. Experimental and computational investigation of sound absorption performance of sustainable porous material: Yucca Gloriosa fiber[J]. Applied Acoustics, 2020, 157: 106999.
[67] Mehrzad S, Taban E, Soltani P, et al. Sugarcane bagasse waste fibers as novel thermal insulation and sound-absorbing materials for application in sustainable buildings [J]. Building and Environment, 2022, 211: 108753.
[68] Fontoba-Ferrándiz J, Juliá-Sanchis E, Crespo Amorós J E, et al. Panels of eco-friendly materials for architectural acoustics[J]. Journal of Composite Materials, 2020, 54(25): 3743-3753.
[69] Arenas C, Ríos J D, Cifuentes H, et al. Sound absorbing porous concretes composed of different solid wastes[J]. European Journal of Environmental and Civil Engineering, 2022, 26(9): 3805-3817.
[70] Dissanayake D G K, Weerasinghe D U, Thebuwanage L M, et al. An environmentally friendly sound insulation material from post-industrial textile waste and natural rubber[J]. Journal of Building Engineering, 2021, 33: 101606.
[71] Selvaraj S, Ramalingam S, Parida S, et al. Chromium containing leather trimmings valorization: Sustainable sound absorber from collagen hydrolysate intercalated electrospun nanofibers[J]. Journal of Hazardous Materials, 2021, 405: 124231.
[72] 谈卓章, 余婷婷, 周元陵, 等. 噪声作业工人对噪声危害和防护知识认知情况分析[J]. 中国职业医学, 2020, 47(5): 614-617.
[73] 韩运强. 铁路噪声治理原则及措施研究[J]. 铁道工程学报, 2017, 34(10): 30-33, 72.
[74] 王永华, 武海权, 刘哲明, 等. 一种快速测试多孔介质声学特征参数的方法[J]. 长春理工大学学报(自然科学版), 2018, 41(1): 85-89, 94.
[75] 槐建坤. 工程机械噪声声源分析及降噪处理研究[J]. 内燃机与配件, 2019(22): 134-135.
[76] 吕玉恒, 郑和平. 大型球磨机噪声治理设计与效果[J]. 振动与冲击, 1999, 18(1): 44.
[77] 吕玉恒, 郁慧琴, 刘丽华, 等. 微穿孔板消声器应用于大型冷却塔噪声治理[C]//第十届全国噪声与振动控制工程学术会议论文集. 北京: 中国声学学会, 2005: 5.
[78] Gao N S, Tang L L, Deng J, et al. Design, fabrication and sound absorption test of composite porous metamaterial with embedding I-plates into porous polyurethane sponge[J]. Applied Acoustics, 2021, 175: 107845.
[79] Isaac C W, Wrona S, Pawelczyk M, et al. Numerical investigation of the vibro-acoustic response of functionallygraded lightweight square panel at low and mid-frequency regions[J]. Composite Structures, 2021, 259: 113460.
[80] Nakayama M, Matsuoka T, Saito Y, et al. A practically designed acoustic metamaterial sheet with two-dimensional connection of local resonators for sound insulation applications[J]. Journal of Applied Physics, 2021,129(10): 105106-1-10.
[81] Muhammad, Lim C W, Vyas N S. A novel application of multi-resonant dissipative elastic metahousing for bearings[J]. Acta Mechanica Solida Sinica, 2021, 34(4): 449-465.
[82] Negahdari H, Javadpour S, Moattar F. Designing, constructing and testing of a new generation of sound barriers[J]. Journal of Environmental Health Science & Engineering, 2019, 17(2): 507-527.