Exclusive:Noise pollution prevention and control

Research progress of acoustic materials and the application in industrial noise pollution control

  • FENG Tao ,
  • YOU Xuanhui ,
  • WANG Jie ,
  • WANG Jing
Expand
  • 1. School of Computer and Atcificial Intelligcnce, Beijing Technology and Business University, Beijing 100048, China;
    2. Nuclear and Radiation Safety Center, Ministry of Ecology and Environment of People's Republic of China, Beijing 100082, China

Received date: 2023-10-31

  Revised date: 2024-03-21

  Online published: 2024-11-20

Abstract

The improvement of the quality of the acoustic environment around factories requires effective management of industrial noise. Acoustic materials play an important role in noise management and are the basis for implementing various noise reduction measures. According to the classification of acoustic materials, the latest research progress of acoustic materials is reviewed from the aspects of calculation model to design and preparation, and the application of various acoustic materials in industrial noise management is analysed and summarized. The results of the study show that: there are various modelling and calculation models for acoustic performance, and suitable models need to be selected according to the problems to be solved in order to ensure the accuracy of the calculation; the new acoustic materials are mainly innovated in structure and substrate,which provide more noise reduction methods,and the results of the study can be used as a reference for the management of industrial noise and the research and development of new acoustic materials.

Cite this article

FENG Tao , YOU Xuanhui , WANG Jie , WANG Jing . Research progress of acoustic materials and the application in industrial noise pollution control[J]. Science & Technology Review, 2024 , 42(20) : 32 -47 . DOI: 10.3981/j.issn.1000-7857.2023.10.01614

References

[1] 吕玉恒. 环境保护声屏障降噪效果分析与应用[C]//上海市老科学技术工作者协会学术年会. 上海: 上海市老科学技术工作者协会, 2012.
[2] 董晓冬. 城市环境噪声污染危害的研究进展[J]. 环境与发展, 2020, 32(5): 59-60.
[3] 毛兴中. 工程机械噪声控制技术[J]. 筑路机械与施工机械化, 2008, 25(4): 16-19.
[4] 蒋真平, 周守艳. 工程机械噪声与控制分析[J]. 建筑机械(上半月), 2007(4): 79-82.
[5] 刘静, 李梅莉, 孙金艳, 等. 天津市某工业区企业噪声危害现状与控制对策[J]. 中国工业医学杂志, 2014, 27(2): 87-89, 96.
[6] 于博雅, 马蕙. 石化企业工业噪声对绿色城市环境影响的实测分析[J]. 建筑节能, 2018, 46(1): 137-140.
[7] 阎瑞雪, 夏杰, 张荣, 等. 某轴承生产企业噪声作业工人对噪声危害和防护知识认知情况[J]. 中国职业医学, 2019, 46(4): 497-500.
[8] Biot M A, Willis D G. The elastic coefficients of the theory of consolidation[J]. Journal of Applied Mechanics, 1957, 24(4): 594-601.
[9] Delany M E, Bazley E N. Acoustical properties of fibrous absorbent materials[J]. Applied Acoustics, 1970, 3(2): 105-116.
[10] Miki Y. Acoustical properties of porous materials. Modifications of Delany-Bazley models[J]. Journal of the Acoustical Society of Japan, 1990, 11(1): 19-24.
[11] Berardi U. Determination through an inverse method of the acoustic impedance and the propagation constant for some natural fibers[C]//INTER-NOISE and NOISECON Congress and Conference Proceedings. Dubrovnik: Institute of Noise Control Engineering, 2015.
[12] Johnson D L, Koplik J, Dashen R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media[J]. Journal of Fluid Mechanics, 1987, 176: 379.
[13] Garai M, Pompoli F. A simple empirical model of polyester fibre materials for acoustical applications[J]. Applied Acoustics, 2005, 66(12): 1383-1398.
[14] Santoni A, Bonfiglio P, Fausti P, et al. Improving the sound absorption performance of sustainable thermal insulation materials: Natural hemp fibres[J]. Applied Acoustics, 2019, 150: 279-289.
[15] Caniato M, Kyaw Oo D’Amore G, Kaspar J, et al. Sound absorption performance of sustainable foam materials: Application of analytical and numerical tools for the optimization of forecasting models[J]. Applied Acoustics, 2020, 161: 107166.
[16] Ehsan S S, Berardi U, Taban E, et al. Natural fibrogranular composite as a novel sustainable sound-absorbing material[J]. Applied Acoustics, 2021, 181: 108157.
[17] An X Y, Fan H L, Zhang C Z. Elastic wave and vibration bandgaps in planar square metamaterial-based lattice structures[J]. Journal of Sound and Vibration, 2020, 475: 115292.
[18] 冯涛, 王晶, 刘斌, 等. 用传递矩阵法计算多层泡沫材料的法向吸声系数[J]. 机械设计与制造, 2012(2): 35-37.
[19] 杨梦露, 冯涛, 贾玉麒, 等. 空气背衬条件下泡沫材料法向吸声系数混合计算方法研究[J]. 噪声与振动控制, 2018, 38(2): 42-44, 76.
[20] 汪婕, 冯涛, 杨梦露, 等. 应用传递矩阵测量中间薄层材料声特性[J]. 声学技术, 2019, 38(3): 334-339.
[21] McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115-133.
[22] 张润, 王永滨. 机器学习及其算法和发展研究[J]. 中国传媒大学学报(自然科学版), 2016, 23(2): 10-18, 24.
[23] Gordon A D, Breiman L, Friedman J H, et al. Classification and regression trees[J]. Biometrics, 1984, 40(3): 874.
[24] Rumelhart D E, Hinton G E, Williams R J. Learning internal representations by error propagation[M]//Readings in Cognitive Science. Amsterdam: Elsevier, 1988: 399-421.
[25] Moody J, Darken C J. Fast learning in networks of locally-tuned processing units[J]. Neural Computation, 1989, 1(2): 281-294.
[26] Iannace G, Ciaburro G, Trematerra A. Modelling sound absorption properties of broom fibers using artificial neural networks[J]. Applied Acoustics, 2020, 163: 107239.
[27] Ciaburro G, Iannace G, Passaro J, et al. Artificial neural network-based models for predicting the sound absorption coefficient of electrospun poly(vinyl pyrrolidone)/silica composite[J]. Applied Acoustics, 2020, 169: 107472.
[28] Kumar S, Jin H, Lim K M, et al. Comparative analysis of machine learning algorithms on prediction of the sound absorption coefficient for reconfigurable acoustic meta-absorbers[J]. Applied Acoustics, 2023, 212: 109603.
[29] Ciaburro G, Iannace G. Membrane-type acoustic metamaterial using cork sheets and attached masses based on reused materials[J]. Applied Acoustics, 2022, 189: 108605.
[30] Liang L S, Guo W L, Zhang Y, et al. Radial basis function neural network for prediction of medium-frequency sound absorption coefficient of composite structure open-cell aluminum foam[J]. Applied Acoustics, 2020, 170: 107505.
[31] Luo Z H, Li T, Yan Y W, et al. Prediction of sound insulation performance of aramid honeycomb sandwich panel based on artificial neural network[J]. Applied Acoustics, 2022, 190: 108656.
[32] Roca D, Yago D, Cante J, et al. Computational design of locally resonant acoustic metamaterials[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 345: 161-182.
[33] Rao R V, Savsani V J, Vakharia D P. Teaching-Learning-based optimization: An optimization method for continuous non-linear large scale problems[J]. Information Sciences, 2012, 183(1): 1-15.
[34] Takezawa A, Yamamoto T, Zhang X P, et al. An objective function for the topology optimization of sound-absorbing materials[J]. Journal of Sound and Vibration, 2019, 443: 804-819.
[35] Park J H, Yang S H, Lee H R, et al. Optimization of low frequency sound absorption by cell size control and multiscale poroacoustics modeling[J]. Journal of Sound and Vibration, 2017, 397: 17-30.
[36] Chambers A T, Manimala J M, Jones M G. Design and optimization of 3D folded-core acoustic liners for enhanced low-frequency performance[J]. AIAA Journal, 2020, 58(1): 206-218.
[37] Gao N S, Luo D D, Cheng B Z, et al. Teaching-learning-based optimization of a composite metastructure in the 0~10 kHz broadband sound absorption range[J]. The Journal of the Acoustical Society of America, 2020, 148(2): EL125.
[38] Gao N S, Zhang Z C, Tang L L, et al. Optimal design of broadband quasi-perfect sound absorption of composite hybrid porous metamaterial using TLBO algorithm[J]. Applied Acoustics, 2021, 183: 108296.
[39] Zuo HW, Li J Z, Shen C, et al. Sound insulation performance of acoustic metamaterials based on attachable helmholtz resonators[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2022, 39(S1): 23-31.
[40] 冯涛, 王余华, 王晶, 等. 结构型声学超材料研究及应用进展[J]. 振动与冲击, 2021, 40(20): 150-157.
[41] Abbad A, Atalla N, Ouisse M, et al. Numerical and experimental investigations on the acoustic performances of membraned Helmholtz resonators embedded in a porous matrix[J]. Journal of Sound and Vibration, 2019, 459: 114873.
[42] Jena D P, Dandsena J, Jayakumari V G. Demonstration of effective acoustic properties of different configurations of Helmholtz resonators[J]. Applied Acoustics, 2019, 155: 371-382.
[43] Ma G C, Sheng P. Acoustic metamaterials: From local resonances to broad horizons[J]. Science Advances, 2016, 2(2): e1501595.
[44] Haberman M R, Guild M D. Acoustic metamaterials[J]. Physics Today, 2016, 69(6): 42-48.
[45] Mahesh K, Mini R S. Theoretical investigation on the acoustic performance of Helmholtz resonator integrated microperforated panel absorber[J]. Applied Acoustics, 2021, 178: 108012.
[46] 马大猷. 微穿孔板吸声结构的理论和设计[J]. 中国科学, 1975(1): 38-50.
[47] Xie S C, Wang D, Feng Z J, et al. Sound absorption performance of microperforated honeycomb metasurface panels with a combination of multiple orifice diameters [J]. Applied Acoustics, 2020, 158: 107046.
[48] Xie S C, Yang S C, Yang C X, et al. Sound absorption performance of a filled honeycomb composite structure [J]. Applied Acoustics, 2020, 162: 107202.
[49] 贾玉麒, 冯涛, 杨梦露, 等. 硅胶薄膜声学超材料单胞结构的隔声测量研究[J]. 功能材料, 2018, 49(1): 1108-1111, 1116.
[50] Lu Z B, Yu X, Lau S K, et al. Membrane-type acoustic metamaterial with eccentric masses for broadband sound isolation[J]. Applied Acoustics, 2020, 157: 107003.
[51] Zhou G J, Wu J H, Lu K, et al. Broadband low-frequency membrane-type acoustic metamaterials with multistate anti-resonances[J]. Applied Acoustics, 2020, 159:107078.
[52] Li H Z, Liu X C, Liu Q, et al. Sound insulation performance of double membrane-type acoustic metamaterials combined with a Helmholtz resonator[J]. Applied Acoustics, 2023, 205: 109297.
[53] Fiala L, Konrád P, Fořt J, et al. Application of ceramic waste in brick blocks with enhanced acoustic properties [J]. Journal of Cleaner Production, 2020, 261: 121185.
[54] Júnior O J S, Pinheiro M A S, Silva J J R, et al. Sound insulation of gypsum block partitions: An analysis of single and double walls[J]. Journal of Building Engineering, 2021, 39: 102253.
[55] Arjunan A. Targeted sound attenuation capacity of 3D printed noise cancelling waveguides[J]. Applied Acoustics, 2019, 151: 30-44.
[56] Islam S, Bhat G. Environmentally-friendly thermal and acoustic insulation materials from recycled textiles[J]. Journal of Environmental Management, 2019, 251: 109536.
[57] Asdrubali F, D’Alessandro F, Schiavoni S. A review of unconventional sustainable building insulation materials [J]. Sustainable Materials and Technologies, 2015, 4: 1-17.
[58] Chen S M, Jiang Y, Chen J, et al. The effects of various additive components on the sound absorption performances of polyurethane foams[J]. Advances in Materials Science and Engineering, 2015, 2015: 317561.
[59] Zhang X H, Qu Z G, He X C, et al. Experimental study on the sound absorption characteristics of continuously graded phononic crystals[J]. AIP Advances, 2016, 6(10): 105205.
[60] 刘杨, 霍又嘉, 杜元开, 等. 吸声材料制备、性能研究进展[J]. 功能材料, 2022, 53(2): 2073-2079.
[61] Baghban S A, Khorasani M, Sadeghi G M M. Acoustic damping flexible polyurethane foams: Effect of isocyanate index and water content on the soundproofing[J]. Journal of Applied Polymer Science, 2019, 136(15): e47363.
[62] Liu L, Chen Y J, Liu H Z, et al. A graphene oxide and functionalized carbon nanotube based semi-open cellular network for sound absorption[J]. Soft Matter, 2019, 15(10): 2269-2276.
[63] Shtrepi L, Astolfi A, Badino E, et al. More than just concrete: Acoustically efficient porous concrete with different aggregate shape and gradation[J]. Applied Sciences, 2021, 11(11): 4835.
[64] 王和平, 王飞, 吕玉恒. 降噪芯片-抗氧化发泡铝及其应用[C]//2014年全国环境声学学术会议论文集. 厦门:《声学技术》编辑部, 2014: 401-404.
[65] Yang X C, Shen X M, Bai P F, et al. Preparation and characterization of gradient compressed porous metal for high-efficiency and thin-thickness acoustic absorber[J]. Materials, 2019, 12(9): 1413.
[66] Soltani P, Taban E, Faridan M, et al. Experimental and computational investigation of sound absorption performance of sustainable porous material: Yucca Gloriosa fiber[J]. Applied Acoustics, 2020, 157: 106999.
[67] Mehrzad S, Taban E, Soltani P, et al. Sugarcane bagasse waste fibers as novel thermal insulation and sound-absorbing materials for application in sustainable buildings [J]. Building and Environment, 2022, 211: 108753.
[68] Fontoba-Ferrándiz J, Juliá-Sanchis E, Crespo Amorós J E, et al. Panels of eco-friendly materials for architectural acoustics[J]. Journal of Composite Materials, 2020, 54(25): 3743-3753.
[69] Arenas C, Ríos J D, Cifuentes H, et al. Sound absorbing porous concretes composed of different solid wastes[J]. European Journal of Environmental and Civil Engineering, 2022, 26(9): 3805-3817.
[70] Dissanayake D G K, Weerasinghe D U, Thebuwanage L M, et al. An environmentally friendly sound insulation material from post-industrial textile waste and natural rubber[J]. Journal of Building Engineering, 2021, 33: 101606.
[71] Selvaraj S, Ramalingam S, Parida S, et al. Chromium containing leather trimmings valorization: Sustainable sound absorber from collagen hydrolysate intercalated electrospun nanofibers[J]. Journal of Hazardous Materials, 2021, 405: 124231.
[72] 谈卓章, 余婷婷, 周元陵, 等. 噪声作业工人对噪声危害和防护知识认知情况分析[J]. 中国职业医学, 2020, 47(5): 614-617.
[73] 韩运强. 铁路噪声治理原则及措施研究[J]. 铁道工程学报, 2017, 34(10): 30-33, 72.
[74] 王永华, 武海权, 刘哲明, 等. 一种快速测试多孔介质声学特征参数的方法[J]. 长春理工大学学报(自然科学版), 2018, 41(1): 85-89, 94.
[75] 槐建坤. 工程机械噪声声源分析及降噪处理研究[J]. 内燃机与配件, 2019(22): 134-135.
[76] 吕玉恒, 郑和平. 大型球磨机噪声治理设计与效果[J]. 振动与冲击, 1999, 18(1): 44.
[77] 吕玉恒, 郁慧琴, 刘丽华, 等. 微穿孔板消声器应用于大型冷却塔噪声治理[C]//第十届全国噪声与振动控制工程学术会议论文集. 北京: 中国声学学会, 2005: 5.
[78] Gao N S, Tang L L, Deng J, et al. Design, fabrication and sound absorption test of composite porous metamaterial with embedding I-plates into porous polyurethane sponge[J]. Applied Acoustics, 2021, 175: 107845.
[79] Isaac C W, Wrona S, Pawelczyk M, et al. Numerical investigation of the vibro-acoustic response of functionallygraded lightweight square panel at low and mid-frequency regions[J]. Composite Structures, 2021, 259: 113460.
[80] Nakayama M, Matsuoka T, Saito Y, et al. A practically designed acoustic metamaterial sheet with two-dimensional connection of local resonators for sound insulation applications[J]. Journal of Applied Physics, 2021,129(10): 105106-1-10.
[81] Muhammad, Lim C W, Vyas N S. A novel application of multi-resonant dissipative elastic metahousing for bearings[J]. Acta Mechanica Solida Sinica, 2021, 34(4): 449-465.
[82] Negahdari H, Javadpour S, Moattar F. Designing, constructing and testing of a new generation of sound barriers[J]. Journal of Environmental Health Science & Engineering, 2019, 17(2): 507-527.
Outlines

/