This article takes a deep dive into the pivotal role of large-scale scientific facilities in innovations of human knowledge, focusing on the steady high magnetic field facility (SHMFF) as an example. Significant contributions are investigated including achieving scientific goals, driving knowledge innovations, promoting industrial upgrading, enhancing international cooperation and exchanges, and attracting top-level talents. SHMFF has established a high-field magnet cluster, providing advanced experimental conditions for cuttingedge research in multiple disciplines such as physics, chemistry, materials science, and biology. This enables researchers to conduct a series of high-standard experimental studies and achieve a series of high-level scientific outcomes. Its derived technologies have been widely applied in fields such as high-end equipment manufacturing and pharmaceutical research, effectively promoting regional economic development. Meanwhile, adhering to the concept of open sharing, SHMFF has achieved multiple breakthroughs in the fields of biology and materials through international cooperation, facilitating the exchange and sharing of knowledge. The successful practice of SHMFF demonstrates the pivotal role of large-scale scientific facilities in driving knowledge innovation and offers valuable insights for optimizing the layout of such facilities and enhancing their technological sophistication in China. In the future, the continued construction and improvement of large-scale scientific facilities systems will serve as a crucial strategic foundation for advancing knowledge innovation and scientific progress.
KUANG Guangli
,
HUANG Xingjie
,
WANG Wenqiang
. Build and effectively utilize large-scale scientific facilities to promote innovations of human knowledge: Taking the steady high magnetic field facility as an example[J]. Science & Technology Review, 2025
, 43(5)
: 26
-36
.
DOI: 10.3981/j.issn.1000-7857.2024.10.01466
[1] 普赖斯D.小科学·大科学[M].世界科学社, 1982.
[2] 申丹娜.大科学与小科学的争论评述[J].科学技术与辩证法, 2009, 26(1):101-107.
[3] 李建明,曾华锋."大科学工程"的语义结构分析[J].科学学研究, 2011, 29(11):1607-1612.
[4] 国际科技合作政策与战略研究课题组.国际科技合作政策与战略[M].北京:科学出版社, 2009.
[5] 韩文艳,熊永兰,张志强.中国大科学装置建设现状、问题与路径研究[J].中国西部, 2018(6):51-60.
[6] 严涛.中国工程院院士赵振堂:大科学装置是科研的"航空母舰"[N].中国科学报, 2023-11-24(1).
[7] 王续琨,张春博.试论大科学工程的基本特征和社会功能[J].山东科技大学学报(社会科学版), 2017, 19(4):1-8.
[8] 匡光力,汪文强.聚焦我国大科学工程发展问题的管理建议[J].科学与社会, 2021, 11(1):1-11.
[9] 王贻芳.建设国际领先的大科学装置奠定科技强国的基础[J].中国科学院院刊, 2017, 32(5):483-487.
[10] 西桂权,付宏,刘光宇.中国大科学装置发展现状及国外经验借鉴[J].科技导报, 2020, 38(11):6-15.
[11] 徐旻昕,王茜,刘秋芸.国之重器:我国大科学装置发展现状探析[J].华东科技, 2020(2):58-65.
[12] 北京科学学研究中心.大科学装置等重大基础设施对国家创新体系建设的重要作用[J].科技智囊, 2018(1):70-85.
[13] 白春礼.大科学装置就是国之重器[N].学习时报, 2021-11-10(6).
[14] 中国科学院文献情报中心空间光电与重大科技基础设施团队,中国科学院成都文献情报中心数据计算平台团队,李泽霞,等.趋势观察:国际重大科技基础设施布局特点
[15] 及发展趋势[J].中国科学院院刊, 2021, 36(4):514-516.国之重器奠定创新未来:十八大以来我国大科学装置成就综述[J].科技传播, 2017, 9(18):14-15.
[16] 中国科学院合肥物质科学研究院强磁场科学中心官网.稳态强磁场实验装置磁体技术和综合性能达到国际领先水平[EB/OL].(2017-06-22)[2024-11-25] . http://www.hmfl. cas.cn/nxwzx/jqyw/202101/t20210128_6208-42.html.
[17] 王贻芳.中国重大科技基础设施的现状和未来发展[J].科技导报, 2023, 41(4):5-13.
[18] 中国科学院合肥物质科学研究院强磁场科学中心.科学实验测试系统[EB/OL].(2023-06-14)[2024-11-25] . http://www. hmfl.cas.cn/qccsyzz/sytj/kxsycsxt/202306/t20-230614_744370.html.
[19] 中华人民共和国科学技术部."大科学装置前沿研究"重点专项指南解读[EB/OL].(2016-02-19)[2024-11-25] . https://www.most.gov.cn/ztzl/shzyczkjjhglgg/zdyfzxjd/201602/t20160219_124167.html.
[20] 李会红,卢宇,曾钢.大科学装置科学研究联合基金十年资助管理工作综述[J].中国科学基金, 2019, 33(4):367-374.
[21] 刘智青,苑长征. BESⅢ实验发现奇特强子态Zc (3900)[J].现代物理知识, 2013, 25(3):22-26.
[22] Gao W S, Zhu X D, Zheng F W, et al. A possible candidate for triply degenerate point fermions in trigonal layered PtBi2[J]. Nature Communications, 2018, 9(1):3249.
[23] He L, Tan P, Zhu L, et al. Circularly permuted LOV2 as a modular photoswitch for optogenetic engineering[J]. Nature Chemical Biology, 2021, 17(8):915-923.
[24] Xu J J, Jarocha L E, Zollitsch T, et al. Magnetic sensitivity of cryptochrome 4 from a migratory songbird[J]. Nature, 2021, 594(7864):535-540.
[25] Zhang E Z, Xie Y M, Fang Y Q, et al. Spin-orbit-parity coupled superconductivity in atomically thin 2M-WS2[J]. Nature Physics, 2023, 19(1):106-113.
[26] Falson J. A highly anisotropic polymorph[J]. Nature Physics, 2023, 19:19-20.
[27] Zhang J B, Shen S C, Puggioni D, et al. A correlated ferromagnetic polar metal by design[J]. Nature Materials, 2024, 23(7):912-919.
[28] 王贻芳,白云翔.发展国家重大科技基础设施引领国际科技创新[J].管理世界, 2020, 36(5):172-188.
[29] 中国科学院重大科技基础设施战略研究组,张闯,阎永廉,等.新时代奋勇攀登谱新章:新形势、新要求下的重大科技基础设施发展思路[J].中国科学院院刊, 2019, 34(增刊2):3-7.