Exclusive: The paradigm and application of clinical research in traditional Chinese medicine

Research progress on regulation of neurotransmitters by traditional Chinese and Western medicines in tic disorder treatment

  • CHEN Huimin ,
  • GONG Yu ,
  • QIAN Qiaoqiao ,
  • LIU Zhisheng ,
  • HE Liyun
Expand
  • 1. Department of Neurology, Wuhan Children's Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China;
    2. Department of Integrated Traditional Chinese and Western Medicine, First Clinical Medical College, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China;
    3. Institute of Clinical Basic Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China

Received date: 2024-04-18

  Revised date: 2024-06-12

  Online published: 2024-12-14

Abstract

Tic disorder is a neurodevelopmental disorder disease that originates in childhood, and more recognized pathogenesis is the dysfunction of the dopaminergic basal ganglion circuit, which is related to a variety of neurochemical and neurotransmitter abnormalities.The drugs currently used for the treatment of tic disorder mainly aim at modulating neurotransmitter imbalances.This article summarizes the recent basic experimental and clinical research on how Chinese and western medicines regulate neurotransmitters in the treatment of tic disorder, and reviews the research status and progress of the treatment, so as to further reveal the pathogenesis of tic disorder and provide a theoretical basis for the clinical application of western medicine in the treatment of tic disorder.The results suggest that the treatment of tic disorder may be related to a decrease in the amount of excitatory neurotransmitters as a whole, as well as an increase in the amount of inhibitory neurotransmitters.However, due to the clinical dispensation of routine cerebrospinal fluid (CSF) and the invasive nature of lumbar puncture, CSF is rarely obtained for neurotransmitter content in children with tic disorder, and the proportion of neurotransmitters across the blood-brain barrier is not clear.It is expected that future studies can further establish a model of the exposure-effect relationship between Chinese and western medicines on plasma, especially cerebrospinal fluid neurotransmitter levels in children with tic disorder, and realize the precise administration of aripiprazole by adjusting the neurotransmitter levels under the guidance of the model.

Cite this article

CHEN Huimin , GONG Yu , QIAN Qiaoqiao , LIU Zhisheng , HE Liyun . Research progress on regulation of neurotransmitters by traditional Chinese and Western medicines in tic disorder treatment[J]. Science & Technology Review, 2024 , 42(21) : 39 -46 . DOI: 10.3981/j.issn.1000-7857.2024.05.00462

References

[1] Liu Z S, Cui Y H, Sun D, et al. Current status, diagnosis, and treatment recommendation for tic disorders in China[J]. Frontiers in Psychiatry, 2020, 11: 774.
[2] Li F, Cui Y, Li Y, et al. Prevalence of mental disorders in school children and adolescents in China: Diagnostic data from detailed clinical assessments of 17,524 individuals[J]. Journal Child Psychology and Psychiatry, 2022, 63(1): 34-46.
[3] Rizwan M, Shahid N U A, Naguit N, et al. Efficacy of behavioural intervention, antipsychotics, and alpha agonists in the treatment of tics disorder in Tourette's syndrome[J]. Cureus, 2022, 14(2): e22449.
[4] Madhurantakam S, Karnam J B, Brabazon D, et al. "nano": An emerging avenue in electrochemical detection of neurotransmitters[J]. ACS Chemical Neuroscience, 2020, 11(24): 4024-4047.
[5] Freed R D, Coffey B J, Mao X L, et al. Decreased anterior cingulate cortex γ-aminobutyric acid in youth with Tourette's disorder[J]. Pediatric Neurology, 2016, 65: 64-70.
[6] Mahone E M, Puts N A, Edden R A E, et al. GABA and glutamate in children with Tourette syndrome: A 1 H MR spectroscopy study at 7T[J]. Psychiatry Research: Neuroimaging, 2018, 273: 46-53.
[7] He J L, Mikkelsen M, Huddleston D A, et al. Frequency and intensity of premonitory urges-to-tic in tourette syndrome is associated with supplementary motor area GABA+ levels[J]. Movement Disorders, 2022, 37(3): 563-573.
[8] Breton-Provencher V, Drummond G T, Feng J S, et al. Spatiotemporal dynamics of noradrenaline during learned behaviour[J]. Nature, 2022, 606(7915): 732-738.
[9] Qian Q Q, Tan Q Q, Sun D, et al. A pilot study on plasma and urine neurotransmitter levels in children with tic disorders[J]. Brain Sciences, 2022, 12(7): 880.
[10] Li H, Wang Y, Zhao C Y, et al. Fecal transplantation can alleviate tic severity in a Tourette syndrome mouse model by modulating intestinal flora and promoting serotonin secretion[J]. Chinese Medical Journal, 2022, 135(6): 707-713.
[11] 吴敏, 姜科宇, 阮铭, 等. 抽动障碍模型大鼠多巴胺和5-羟色胺水平与时辰相关研究[C]//中华中医药学会儿科分会第三十二次学术大会论文集. 北京: 中华中医药学会, 2015: 342-345.
[12] Nikolaus S, Mamlins E, Antke C, et al. Boosted dopamine and blunted serotonin in Tourette syndrome-evidence from in vivo imaging studies[J]. Reviews in the Neurosciences, 2022, 33(8): 859-876.
[13] Lamothe H, Schreiweis C, Mondragón-González L S, et al. The Sapap3-mouse reconsidered as a comorbid model expressing a spectrum of pathological repetitive behaviours[J]. Translational Psychiatry, 2023, 13: 26.
[14] Lum J S, Pan B, Deng C, et al. Effects of short- and long-term aripiprazole treatment on Group I mGluRs in the nucleus accumbens: Comparison with haloperidol[J]. Psychiatry Research, 2018, 260: 152-157.
[15] Rizzo F, Nespoli E, Abaei A, et al. Aripiprazole selectively reduces motor tics in a young animal model for Tourette's syndrome and comorbid attention deficit and hyperactivity disorder[J]. Frontiers in Neurology, 2018, 9: 59.
[16] Roessner V, Eichele H, Stern J S, et al. European clinical guidelines for Tourette syndrome and other tic disorders-Version 2.0. Part III: Pharmacological treatment[J]. European Child & Adolescent Psychiatry, 2022, 31(3): 425-441.
[17] Kanaan A S, Gerasch S, García-García I, et al. Pathological glutamatergic neurotransmission in Gilles de la Tourette syndrome[J]. Brain, 2017, 140(1): 218-234.
[18] 谢春良, 缑志娟, 王俊, 等. 阿立哌唑治疗Tourette综合征的效果及安全性[J]. 国际精神病学杂志, 2019, 46(6): 1027-1029.
[19] 史运强. 阿立哌唑与氟哌啶醇联合心理行为干预治疗儿童抽动障碍的效果比较[J]. 中国民康医学, 2023, 35(5): 159-161.
[20] 黄健, 袁小敏. 落藏腹针疗法联合阿立哌唑治疗小儿多发性抽动症效果及对肌肉功能、神经递质的影响[J]. 辽宁中医杂志, 2023, 50(2): 174-177.
[21] 张如意, 张丽, 艾厚喜, 等. 金童颗粒治疗拟抽动秽语综合征模型大鼠的药理机制研究[J]. 中国康复理论与实践, 2010, 16(10): 910-912.
[22] 朱沁泉, 陈盼, 曾青松, 等. 健脾柔肝息风汤对抽动障碍模型大鼠行为学及多巴胺受体mRNA表达的影响[J]. 湖南中医杂志, 2020, 36(12): 142-146.
[23] Wang D, Tian H L, Cui X, et al. Effects of Jian-pi-ZhiDong Decoction on the expression of 5-HT and its receptor in a rat model of tourette syndrome and comorbid anxiety[J]. Medical Science Monitor, 2020, 26: e924658.
[24] Zhang W, Yu W J, Liu X F, et al. Effect of Jian-pi-ZhiDong Decoction on the amino acid neurotransmitters in a rat model of tourette syndrome and comorbid anxiety disorder[J]. Frontiers in Psychiatry, 2020, 11: 515.
[25] 杨德爽, 孟州令, 国文文, 等. 柴胡加龙骨牡蛎汤对多发性抽动症模型大鼠行为学和多巴胺系统的影响[J]. 中国中西医结合杂志, 2018, 38(1): 76-79.
[26] 程申, 郎旭东, 方芳, 等. 天麻钩藤饮对抽动障碍模型大鼠行为改善及神经保护作用[J]. 中国现代应用药学, 2023, 40(11): 1475-1480.
[27] 吴雪, 王忠, 廖星, 等. 3种口服中成药治疗儿童抽动障碍的快速卫生技术评估[J]. 中国中药杂志, 2023, 48(14): 3965-3976.
[28] 庞尚一, 王佳琪, 裴明明, 等. 芍麻止痉颗粒联合氟哌啶醇治疗儿童抽动症的临床研究[J]. 现代药物与临床, 2023, 38(3): 616-619.
[29] 曹杏, 沈雷, 陈振辉, 等. 氟哌啶醇联合菖麻熄风片治疗儿童抽动症的疗效及其对神经递质和T淋巴细胞亚群的影响[J]. 安徽医学, 2022, 43(3): 318-321.
[30] 尹璐, 徐锐, 杨慧, 等. 菖麻熄风片联合硫必利治疗小儿多发性抽动症的临床研究[J]. 现代药物与临床, 2023, 38(9): 2212-2217.
[31] 刘雨东, 李敬娴, 郭武玲, 等. 菖麻熄风片联合可乐定透皮贴治疗儿童抽动症的临床研究[J]. 现代药物与临床, 2019, 34(10): 3030-3034.
[32] 张慧娟, 江志拴, 李琳, 等. 九味熄风颗粒联合可乐定透皮贴片治疗小儿抽动症的临床研究[J]. 现代药物与临床, 2019, 34(7): 2077-2081.
[33] 张迪, 雒琳, 文天才, 等. 中医辨证论治疗效评价研究进展[J]. 科技导报, 2023, 41(14): 32-41.
[34] 周雪忠, 王世华, 张迪, 等. 构建中医药特色真实世界临床研究新模式的实践与思考[J]. 科技导报, 2023, 41(14): 22-31.
[35] 胡彬文, 段然, 张潞璐, 等. 基于数据挖掘和网络药理学探讨杨丽新治疗抽动障碍用药规律和作用机制[J]. 中药新药与临床药理, 2024, 35(2): 237-246.
[36] 冯鹏, 王倩, 罗文珍, 等. 基于网络药理学探讨石菖蒲- 郁金药对治疗儿童抽动障碍的作用机制研究[J]. 中医儿科杂志, 2021, 17(5): 1-6.
[37] 金思佳, 白晓红, 修婵, 等. 基于网络药理学方法和分子对接技术探讨钩藤-菊花药对治疗抽动障碍的分子机制[J]. 山西中医药大学学报, 2023, 24(8): 866-871.
[38] Seo K H, Lee D Y, Jeong R H, et al. Neuroprotective effect of prenylated arylbenzofuran and flavonoids from Morus alba fruits on glutamate-induced oxidative injury in HT22 hippocampal cells[J]. Journal of Medicinal Food, 2015, 18(4): 403-408.
[39] 张胜, 张尧, 李彪, 等. 山奈酚对CUMS抑郁模型大鼠海马神经元过度自噬和氧化应激损伤的保护作用[J]. 中国免疫学杂志, 2019, 35(2): 146-150.
[40] Xu D, Wu D, Qin M, et al. Efficient delivery of nerve growth factors to the central nervous system for neural regeneration[J]. Advanced Materials, 2019, 31(33): 1900727.
[41] Koga T, Sakamoto T, Sakuradani E, et al. Neurite outgrowth-promoting activity of compounds in PC12 cells from sunflower seeds[J]. Molecules, 2020, 25(20): 4748.
[42] Poppi L A, Ho-Nguyen K T, Shi A N, et al. Recurrent implication of striatal cholinergic interneurons in a range of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders[J]. Cells, 2021, 10(4): 907.
[43] Herraiz T, Guillén H. Monoamine oxidase-a inhibition and associated antioxidant activity in plant extracts with potential antidepressant actions[J]. BioMed Research International, 2018, 2018: 4810394.
[44] Maciel R M, Carvalho F B, Olabiyi A A, et al. Neuroprotective effects of quercetin on memory and anxiogeniclike behavior in diabetic rats: Role of ectonucleotidases and acetylcholinesterase activities[J]. Biomedicine & Pharmacotherapy, 2016, 84: 559-568.
[45] 刘琦, 温雅, 贾珍, 等. 木犀草素抗鱼藤酮致小鼠多巴胺能细胞损伤机制的研究[J]. 脑与神经疾病杂志, 2020, 28(11): 669-673.
Outlines

/